1 #include <arch/x86/interrupts.h>
2 #include <arch/x86/tss.h>
7 #include <lunaix/mm/cake.h>
8 #include <lunaix/mm/kalloc.h>
9 #include <lunaix/mm/pmm.h>
10 #include <lunaix/mm/valloc.h>
11 #include <lunaix/mm/vmm.h>
12 #include <lunaix/process.h>
13 #include <lunaix/sched.h>
14 #include <lunaix/signal.h>
15 #include <lunaix/spike.h>
16 #include <lunaix/status.h>
17 #include <lunaix/syscall.h>
18 #include <lunaix/syslog.h>
20 volatile struct proc_info* __current;
22 struct proc_info dummy;
24 struct scheduler sched_ctx;
26 struct cake_pile* proc_pile;
33 // size_t pg_size = ROUNDUP(sizeof(struct proc_info) * MAX_PROCESS, 0x1000);
35 // for (size_t i = 0; i <= pg_size; i += 4096) {
36 // uintptr_t pa = pmm_alloc_page(KERNEL_PID, PP_FGPERSIST);
38 // PD_REFERENCED, PROC_START + i, pa, PG_PREM_RW, VMAP_NULL);
41 proc_pile = cake_new_pile("proc", sizeof(struct proc_info), 1, 0);
42 cake_set_constructor(proc_pile, cake_ctor_zeroing);
44 sched_ctx = (struct scheduler){ ._procs = vzalloc(PROC_TABLE_SIZE),
50 run(struct proc_info* proc)
52 proc->state = PS_RUNNING;
55 将tss.esp0设置为上次调度前的esp值。
56 当处理信号时,上下文信息是不会恢复的,而是保存在用户栈中,然后直接跳转进位于用户空间的sig_wrapper进行
57 信号的处理。当用户自定义的信号处理函数返回时,sigreturn的系统调用才开始进行上下文的恢复(或者说是进行
59 由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
60 这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
62 tss_update_esp(proc->intr_ctx.registers.esp);
64 apic_done_servicing();
66 asm volatile("pushl %0\n"
67 "jmp switch_to\n" ::"r"(proc)
68 : "memory"); // kernel/asm/x86/interrupt.S
72 can_schedule(struct proc_info* proc)
74 if (__SIGTEST(proc->sig_pending, _SIGCONT)) {
75 __SIGCLEAR(proc->sig_pending, _SIGSTOP);
76 } else if (__SIGTEST(proc->sig_pending, _SIGSTOP)) {
77 // 如果进程受到SIGSTOP,则该进程不给予调度。
87 struct proc_info* leader = sched_ctx._procs[0];
88 struct proc_info *pos, *n;
89 time_t now = clock_systime();
90 llist_for_each(pos, n, &leader->sleep.sleepers, sleep.sleepers)
92 if (PROC_TERMINATED(pos->state)) {
96 time_t wtime = pos->sleep.wakeup_time;
97 time_t atime = pos->sleep.alarm_time;
99 if (wtime && now >= wtime) {
100 pos->sleep.wakeup_time = 0;
101 pos->state = PS_READY;
104 if (atime && now >= atime) {
105 pos->sleep.alarm_time = 0;
106 __SIGSET(pos->sig_pending, _SIGALRM);
109 if (!wtime && !atime) {
111 llist_delete(&pos->sleep.sleepers);
119 if (!sched_ctx.ptable_len) {
123 // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序……
124 cpu_disable_interrupt();
125 struct proc_info* next;
126 int prev_ptr = sched_ctx.procs_index;
129 if (!(__current->state & ~PS_RUNNING)) {
130 __current->state = PS_READY;
135 // round-robin scheduler
138 ptr = (ptr + 1) % sched_ctx.ptable_len;
139 next = sched_ctx._procs[ptr];
140 } while (!next || (next->state != PS_READY && ptr != prev_ptr));
142 sched_ctx.procs_index = ptr;
144 if (!can_schedule(next)) {
145 // 如果该进程不给予调度,则尝试重新选择
155 cpu_enable_interrupt();
156 cpu_int(LUNAIX_SCHED);
159 __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
165 if (__current->sleep.wakeup_time) {
166 return (__current->sleep.wakeup_time - clock_systime()) / 1000U;
169 struct proc_info* root_proc = sched_ctx._procs[0];
170 __current->sleep.wakeup_time = clock_systime() + seconds * 1000;
171 llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
173 __current->intr_ctx.registers.eax = seconds;
174 __current->state = PS_BLOCKED;
178 __DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
180 time_t prev_ddl = __current->sleep.alarm_time;
181 time_t now = clock_systime();
183 __current->sleep.alarm_time = seconds ? now + seconds * 1000 : 0;
185 struct proc_info* root_proc = sched_ctx._procs[0];
186 if (llist_empty(&__current->sleep.sleepers)) {
187 llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
190 return prev_ddl ? (prev_ddl - now) / 1000 : 0;
193 __DEFINE_LXSYSCALL1(void, exit, int, status)
195 terminate_proc(status);
199 __DEFINE_LXSYSCALL(void, yield)
205 _wait(pid_t wpid, int* status, int options);
207 __DEFINE_LXSYSCALL1(pid_t, wait, int*, status)
209 return _wait(-1, status, 0);
212 __DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options)
214 return _wait(pid, status, options);
217 __DEFINE_LXSYSCALL(int, geterrno)
219 return __current->k_status;
223 _wait(pid_t wpid, int* status, int options)
225 pid_t cur = __current->pid;
226 int status_flags = 0;
227 struct proc_info *proc, *n;
228 if (llist_empty(&__current->children)) {
232 wpid = wpid ? wpid : -__current->pgid;
234 llist_for_each(proc, n, &__current->children, siblings)
236 if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) {
237 if (proc->state == PS_TERMNAT && !options) {
238 status_flags |= PEXITTERM;
241 if (proc->state == PS_READY && (options & WUNTRACED)) {
242 status_flags |= PEXITSTOP;
247 if ((options & WNOHANG)) {
255 status_flags |= PEXITSIG * (proc->sig_inprogress != 0);
257 *status = proc->exit_code | status_flags;
259 return destroy_process(proc->pid);
266 for (; i < sched_ctx.ptable_len && sched_ctx._procs[i]; i++)
269 if (i == MAX_PROCESS) {
270 panick("Panic in Ponyville shimmer!");
273 if (i == sched_ctx.ptable_len) {
274 sched_ctx.ptable_len++;
277 struct proc_info* proc = cake_grab(proc_pile);
279 proc->state = PS_CREATED;
281 proc->created = clock_systime();
282 proc->pgid = proc->pid;
283 proc->fdtable = vzalloc(sizeof(struct v_fdtable));
285 llist_init_head(&proc->mm.regions.head);
286 llist_init_head(&proc->tasks);
287 llist_init_head(&proc->children);
288 llist_init_head(&proc->grp_member);
289 llist_init_head(&proc->sleep.sleepers);
290 waitq_init(&proc->waitqueue);
292 sched_ctx._procs[i] = proc;
298 commit_process(struct proc_info* process)
300 assert(process == sched_ctx._procs[process->pid]);
302 if (process->state != PS_CREATED) {
303 __current->k_status = EINVAL;
307 // every process is the child of first process (pid=1)
308 if (!process->parent) {
309 process->parent = sched_ctx._procs[1];
312 llist_append(&process->parent->children, &process->siblings);
313 llist_append(&sched_ctx._procs[0]->tasks, &process->tasks);
315 process->state = PS_READY;
318 // from <kernel/process.c>
320 __del_pagetable(pid_t pid, uintptr_t mount_point);
323 destroy_process(pid_t pid)
326 if (index <= 0 || index > sched_ctx.ptable_len) {
327 __current->k_status = EINVAL;
330 struct proc_info* proc = sched_ctx._procs[index];
331 sched_ctx._procs[index] = 0;
333 llist_delete(&proc->siblings);
334 llist_delete(&proc->grp_member);
335 llist_delete(&proc->tasks);
336 llist_delete(&proc->sleep.sleepers);
339 vfs_unref_dnode(proc->cwd);
342 for (size_t i = 0; i < VFS_MAX_FD; i++) {
343 struct v_fd* fd = proc->fdtable->fds[i];
345 vfs_pclose(fd->file, pid);
348 vfree(proc->fdtable);
350 struct mm_region *pos, *n;
351 llist_for_each(pos, n, &proc->mm.regions.head, head)
356 vmm_mount_pd(PD_MOUNT_1, proc->page_table);
358 __del_pagetable(pid, PD_MOUNT_1);
360 vmm_unmount_pd(PD_MOUNT_1);
362 cake_release(proc_pile, proc);
368 terminate_proc(int exit_code)
370 __current->state = PS_TERMNAT;
371 __current->exit_code = exit_code;
373 __SIGSET(__current->parent->sig_pending, _SIGCHLD);
377 get_process(pid_t pid)
380 if (index < 0 || index > sched_ctx.ptable_len) {
383 return sched_ctx._procs[index];
387 orphaned_proc(pid_t pid)
391 if (pid >= sched_ctx.ptable_len)
393 struct proc_info* proc = sched_ctx._procs[pid];
394 struct proc_info* parent = proc->parent;
396 // 如果其父进程的状态是terminated 或 destroy中的一种
397 // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
398 return PROC_TERMINATED(parent->state) || parent->created > proc->created;