2 #include <sys/mm/mempart.h>
6 #include <lunaix/fs/taskfs.h>
7 #include <lunaix/mm/cake.h>
8 #include <lunaix/mm/mmap.h>
9 #include <lunaix/mm/pmm.h>
10 #include <lunaix/mm/valloc.h>
11 #include <lunaix/mm/vmm.h>
12 #include <lunaix/mm/procvm.h>
13 #include <lunaix/process.h>
14 #include <lunaix/sched.h>
15 #include <lunaix/signal.h>
16 #include <lunaix/spike.h>
17 #include <lunaix/status.h>
18 #include <lunaix/syscall.h>
19 #include <lunaix/syslog.h>
20 #include <lunaix/hart_state.h>
21 #include <lunaix/kpreempt.h>
23 #include <lunaix/generic/isrm.h>
25 #include <klibc/string.h>
27 struct thread empty_thread_obj;
29 volatile struct proc_info* __current;
30 volatile struct thread* current_thread = &empty_thread_obj;
32 struct scheduler sched_ctx;
34 struct cake_pile *proc_pile ,*thread_pile;
36 #define root_process (sched_ctx.procs[1])
43 proc_pile = cake_new_pile("proc", sizeof(struct proc_info), 1, 0);
44 thread_pile = cake_new_pile("thread", sizeof(struct thread), 1, 0);
45 cake_set_constructor(proc_pile, cake_ctor_zeroing);
46 cake_set_constructor(thread_pile, cake_ctor_zeroing);
48 sched_ctx = (struct scheduler){
49 .procs = vzalloc(PROC_TABLE_SIZE), .ptable_len = 0, .procs_index = 0};
51 llist_init_head(&sched_ctx.sleepers);
55 run(struct thread* thread)
57 thread->state = PS_RUNNING;
58 thread->process->state = PS_RUNNING;
59 thread->process->th_active = thread;
61 procvm_mount_self(vmspace(thread->process));
62 set_current_executing(thread);
66 fail("unexpected return from switching");
70 Currently, we do not allow self-destorying thread, doing
71 so will eliminate current kernel stack which is disaster.
72 A compromise solution is to perform a regular scan and
73 clean-up on these thread, in the preemptible kernel thread.
77 cleanup_detached_threads() {
78 ensure_preempt_caller();
80 // XXX may be a lock on sched_context will ben the most appropriate?
81 cpu_disable_interrupt();
84 struct thread *pos, *n;
85 llist_for_each(pos, n, sched_ctx.threads, sched_sibs) {
86 if (likely(!proc_terminated(pos) || !thread_detached(pos))) {
90 struct proc_mm* mm = vmspace(pos->process);
100 INFO("cleaned %d terminated detached thread(s)", i);
103 cpu_enable_interrupt();
107 can_schedule(struct thread* thread)
113 if (proc_terminated(thread)) {
117 if (preempt_check_stalled(thread)) {
118 thread_flags_set(thread, TH_STALLED);
122 if (unlikely(kernel_process(thread->process))) {
123 // a kernel process is always runnable
124 return thread->state == PS_READY;
127 struct sigctx* sh = &thread->sigctx;
129 if ((thread->state & PS_PAUSED)) {
130 return !!(sh->sig_pending & ~1);
133 if ((thread->state & PS_BLOCKED)) {
134 return sigset_test(sh->sig_pending, _SIGINT);
137 if (sigset_test(sh->sig_pending, _SIGSTOP)) {
138 // If one thread is experiencing SIGSTOP, then we know
139 // all other threads are also SIGSTOP (as per POSIX-2008.1)
140 // In which case, the entire process is stopped.
141 thread->state = PS_STOPPED;
145 if (sigset_test(sh->sig_pending, _SIGCONT)) {
146 thread->state = PS_READY;
149 return (thread->state == PS_READY) \
150 && proc_runnable(thread->process);
156 struct thread *pos, *n;
157 time_t now = clock_systime() / 1000;
159 llist_for_each(pos, n, &sched_ctx.sleepers, sleep.sleepers)
161 if (proc_terminated(pos)) {
165 time_t wtime = pos->sleep.wakeup_time;
166 time_t atime = pos->sleep.alarm_time;
168 if (wtime && now >= wtime) {
169 pos->sleep.wakeup_time = 0;
170 pos->state = PS_READY;
173 if (atime && now >= atime) {
174 pos->sleep.alarm_time = 0;
175 thread_setsignal(pos, _SIGALRM);
178 if (!wtime && !atime) {
180 llist_delete(&pos->sleep.sleepers);
188 assert(sched_ctx.ptable_len && sched_ctx.ttable_len);
190 // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序……
193 if (!(current_thread->state & ~PS_RUNNING)) {
194 current_thread->state = PS_READY;
195 __current->state = PS_READY;
199 procvm_unmount_self(vmspace(__current));
202 // round-robin scheduler
204 struct thread* current = current_thread;
205 struct thread* to_check = current;
208 to_check = list_next(to_check, struct thread, sched_sibs);
210 if (can_schedule(to_check)) {
214 if (to_check == current) {
215 // FIXME do something less leathal here
216 fail("Ran out of threads!")
222 sched_ctx.procs_index = to_check->process->pid;
228 fail("unexpected return from scheduler");
231 __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
237 time_t systime = clock_systime() / 1000;
238 struct haybed* bed = ¤t_thread->sleep;
240 if (bed->wakeup_time) {
241 return (bed->wakeup_time - systime);
244 bed->wakeup_time = systime + seconds;
246 if (llist_empty(&bed->sleepers)) {
247 llist_append(&sched_ctx.sleepers, &bed->sleepers);
250 store_retval(seconds);
252 block_current_thread();
258 __DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
260 struct haybed* bed = ¤t_thread->sleep;
261 time_t prev_ddl = bed->alarm_time;
262 time_t now = clock_systime() / 1000;
264 bed->alarm_time = seconds ? now + seconds : 0;
266 if (llist_empty(&bed->sleepers)) {
267 llist_append(&sched_ctx.sleepers, &bed->sleepers);
270 return prev_ddl ? (prev_ddl - now) : 0;
273 __DEFINE_LXSYSCALL1(void, exit, int, status)
275 terminate_current(status);
279 __DEFINE_LXSYSCALL(void, yield)
285 _wait(pid_t wpid, int* status, int options);
287 __DEFINE_LXSYSCALL1(pid_t, wait, int*, status)
289 return _wait(-1, status, 0);
292 __DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options)
294 return _wait(pid, status, options);
297 __DEFINE_LXSYSCALL(int, geterrno)
299 return current_thread->syscall_ret;
303 _wait(pid_t wpid, int* status, int options)
305 pid_t cur = __current->pid;
306 int status_flags = 0;
307 struct proc_info *proc, *n;
308 if (llist_empty(&__current->children)) {
312 wpid = wpid ? wpid : -__current->pgid;
315 llist_for_each(proc, n, &__current->children, siblings)
317 if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) {
318 if (proc->state == PS_TERMNAT && !options) {
319 status_flags |= PEXITTERM;
322 if (proc->state == PS_READY && (options & WUNTRACED)) {
323 status_flags |= PEXITSTOP;
328 if ((options & WNOHANG)) {
337 *status = PEXITNUM(status_flags, proc->exit_code);
339 return destroy_process(proc->pid);
346 for (; i < sched_ctx.ptable_len && sched_ctx.procs[i]; i++)
349 if (unlikely(i == MAX_PROCESS)) {
350 panick("Panic in Ponyville shimmer!");
357 alloc_thread(struct proc_info* process) {
358 if (process->thread_count >= MAX_THREAD_PP) {
362 struct thread* th = cake_grab(thread_pile);
364 th->process = process;
365 th->created = clock_systime();
367 // FIXME we need a better tid allocation method!
368 th->tid = th->created;
369 th->tid = (th->created ^ ((ptr_t)th)) % MAX_THREAD_PP;
371 th->state = PS_CREATED;
373 llist_init_head(&th->sleep.sleepers);
374 llist_init_head(&th->sched_sibs);
375 llist_init_head(&th->proc_sibs);
376 waitq_init(&th->waitqueue);
384 pid_t i = get_free_pid();
386 if (i == sched_ctx.ptable_len) {
387 sched_ctx.ptable_len++;
390 struct proc_info* proc = cake_grab(proc_pile);
395 proc->state = PS_CREATED;
397 proc->created = clock_systime();
398 proc->pgid = proc->pid;
400 proc->sigreg = vzalloc(sizeof(struct sigregistry));
401 proc->fdtable = vzalloc(sizeof(struct v_fdtable));
403 proc->mm = procvm_create(proc);
405 llist_init_head(&proc->tasks);
406 llist_init_head(&proc->children);
407 llist_init_head(&proc->grp_member);
408 llist_init_head(&proc->threads);
410 iopoll_init(&proc->pollctx);
412 sched_ctx.procs[i] = proc;
418 commit_thread(struct thread* thread) {
419 struct proc_info* process = thread->process;
421 assert(process && !proc_terminated(process));
423 llist_append(&process->threads, &thread->proc_sibs);
425 if (sched_ctx.threads) {
426 llist_append(sched_ctx.threads, &thread->sched_sibs);
428 sched_ctx.threads = &thread->sched_sibs;
431 sched_ctx.ttable_len++;
432 process->thread_count++;
433 thread->state = PS_READY;
437 commit_process(struct proc_info* process)
439 assert(process == sched_ctx.procs[process->pid]);
440 assert(process->state == PS_CREATED);
442 // every process is the child of first process (pid=1)
443 if (!process->parent) {
444 if (likely(!kernel_process(process))) {
445 process->parent = root_process;
447 process->parent = process;
450 assert(!proc_terminated(process->parent));
453 if (sched_ctx.proc_list) {
454 llist_append(sched_ctx.proc_list, &process->tasks);
456 sched_ctx.proc_list = &process->tasks;
459 llist_append(&process->parent->children, &process->siblings);
461 process->state = PS_READY;
465 destory_thread(struct thread* thread)
467 cake_ensure_valid(thread);
469 struct proc_info* proc = thread->process;
471 llist_delete(&thread->sched_sibs);
472 llist_delete(&thread->proc_sibs);
473 llist_delete(&thread->sleep.sleepers);
474 waitq_cancel_wait(&thread->waitqueue);
476 thread_release_mem(thread);
478 proc->thread_count--;
479 sched_ctx.ttable_len--;
481 cake_release(thread_pile, thread);
485 orphan_children(struct proc_info* proc)
487 struct proc_info *root;
488 struct proc_info *pos, *n;
492 llist_for_each(pos, n, &proc->children, siblings) {
494 llist_append(&root->children, &pos->siblings);
499 delete_process(struct proc_info* proc)
501 pid_t pid = proc->pid;
502 struct proc_mm* mm = vmspace(proc);
504 assert(pid); // long live the pid0 !!
506 sched_ctx.procs[pid] = NULL;
508 llist_delete(&proc->siblings);
509 llist_delete(&proc->grp_member);
510 llist_delete(&proc->tasks);
514 taskfs_invalidate(pid);
517 vfs_unref_dnode(proc->cwd);
524 for (size_t i = 0; i < VFS_MAX_FD; i++) {
525 struct v_fd* fd = proc->fdtable->fds[i];
527 vfs_pclose(fd->file, pid);
532 vfree(proc->fdtable);
534 signal_free_registry(proc->sigreg);
538 struct thread *pos, *n;
539 llist_for_each(pos, n, &proc->threads, proc_sibs) {
540 // terminate and destory all thread unconditionally
544 orphan_children(proc);
546 procvm_unmount_release(mm);
548 cake_release(proc_pile, proc);
552 destroy_process(pid_t pid)
555 if (index <= 0 || index > sched_ctx.ptable_len) {
556 syscall_result(EINVAL);
560 struct proc_info* proc = sched_ctx.procs[index];
561 delete_process(proc);
567 terminate_proc_only(struct proc_info* proc, int exit_code) {
568 proc->state = PS_TERMNAT;
569 proc->exit_code = exit_code;
571 proc_setsignal(proc->parent, _SIGCHLD);
575 terminate_thread(struct thread* thread, ptr_t val) {
576 thread->exit_val = val;
577 thread->state = PS_TERMNAT;
579 struct proc_info* proc = thread->process;
580 if (proc->thread_count == 1) {
581 terminate_proc_only(thread->process, 0);
586 terminate_current_thread(ptr_t val) {
587 terminate_thread(current_thread, val);
591 terminate_proccess(struct proc_info* proc, int exit_code) {
592 assert(!kernel_process(proc));
594 if (proc->pid == 1) {
595 panick("Attempt to kill init");
598 terminate_proc_only(proc, exit_code);
600 struct thread *pos, *n;
601 llist_for_each(pos, n, &__current->threads, proc_sibs) {
602 pos->state = PS_TERMNAT;
607 terminate_current(int exit_code)
609 terminate_proccess(__current, exit_code);
613 get_process(pid_t pid)
616 if (index < 0 || index > sched_ctx.ptable_len) {
619 return sched_ctx.procs[index];
623 orphaned_proc(pid_t pid)
627 if (pid >= sched_ctx.ptable_len)
629 struct proc_info* proc = sched_ctx.procs[pid];
630 struct proc_info* parent = proc->parent;
632 // 如果其父进程的状态是terminated 或 destroy中的一种
633 // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
634 return proc_terminated(parent) || parent->created > proc->created;