1 #include <arch/x86/interrupts.h>
2 #include <arch/x86/tss.h>
7 #include <lunaix/mm/cake.h>
8 #include <lunaix/mm/kalloc.h>
9 #include <lunaix/mm/pmm.h>
10 #include <lunaix/mm/valloc.h>
11 #include <lunaix/mm/vmm.h>
12 #include <lunaix/process.h>
13 #include <lunaix/sched.h>
14 #include <lunaix/signal.h>
15 #include <lunaix/spike.h>
16 #include <lunaix/status.h>
17 #include <lunaix/syscall.h>
18 #include <lunaix/syslog.h>
20 #define PROC_TABLE_SIZE 8192
21 #define MAX_PROCESS (PROC_TABLE_SIZE / sizeof(uintptr_t))
23 volatile struct proc_info* __current;
25 struct proc_info dummy;
27 struct scheduler sched_ctx;
29 struct cake_pile* proc_pile;
36 // size_t pg_size = ROUNDUP(sizeof(struct proc_info) * MAX_PROCESS, 0x1000);
38 // for (size_t i = 0; i <= pg_size; i += 4096) {
39 // uintptr_t pa = pmm_alloc_page(KERNEL_PID, PP_FGPERSIST);
41 // PD_REFERENCED, PROC_START + i, pa, PG_PREM_RW, VMAP_NULL);
44 proc_pile = cake_new_pile("proc", sizeof(struct proc_info), 1, 0);
45 cake_set_constructor(proc_pile, cake_ctor_zeroing);
47 sched_ctx = (struct scheduler){ ._procs = vzalloc(PROC_TABLE_SIZE),
53 run(struct proc_info* proc)
55 proc->state = PS_RUNNING;
58 将tss.esp0设置为上次调度前的esp值。
59 当处理信号时,上下文信息是不会恢复的,而是保存在用户栈中,然后直接跳转进位于用户空间的sig_wrapper进行
60 信号的处理。当用户自定义的信号处理函数返回时,sigreturn的系统调用才开始进行上下文的恢复(或者说是进行
62 由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
63 这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
65 tss_update_esp(proc->intr_ctx.registers.esp);
67 apic_done_servicing();
69 asm volatile("pushl %0\n"
70 "jmp switch_to\n" ::"r"(proc)
71 : "memory"); // kernel/asm/x86/interrupt.S
75 can_schedule(struct proc_info* proc)
77 if (__SIGTEST(proc->sig_pending, _SIGCONT)) {
78 __SIGCLEAR(proc->sig_pending, _SIGSTOP);
79 } else if (__SIGTEST(proc->sig_pending, _SIGSTOP)) {
80 // 如果进程受到SIGSTOP,则该进程不给予调度。
90 struct proc_info* leader = sched_ctx._procs[0];
91 struct proc_info *pos, *n;
92 time_t now = clock_systime();
93 llist_for_each(pos, n, &leader->sleep.sleepers, sleep.sleepers)
95 if (PROC_TERMINATED(pos->state)) {
99 time_t wtime = pos->sleep.wakeup_time;
100 time_t atime = pos->sleep.alarm_time;
102 if (wtime && now >= wtime) {
103 pos->sleep.wakeup_time = 0;
104 pos->state = PS_READY;
107 if (atime && now >= atime) {
108 pos->sleep.alarm_time = 0;
109 __SIGSET(pos->sig_pending, _SIGALRM);
112 if (!wtime && !atime) {
114 llist_delete(&pos->sleep.sleepers);
122 if (!sched_ctx.ptable_len) {
126 // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序……
127 cpu_disable_interrupt();
128 struct proc_info* next;
129 int prev_ptr = sched_ctx.procs_index;
132 if (!(__current->state & ~PS_RUNNING)) {
133 __current->state = PS_READY;
138 // round-robin scheduler
141 ptr = (ptr + 1) % sched_ctx.ptable_len;
142 next = sched_ctx._procs[ptr];
143 } while (!next || (next->state != PS_READY && ptr != prev_ptr));
145 sched_ctx.procs_index = ptr;
147 if (!can_schedule(next)) {
148 // 如果该进程不给予调度,则尝试重新选择
158 cpu_enable_interrupt();
159 cpu_int(LUNAIX_SCHED);
162 __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
168 if (__current->sleep.wakeup_time) {
169 return (__current->sleep.wakeup_time - clock_systime()) / 1000U;
172 struct proc_info* root_proc = sched_ctx._procs[0];
173 __current->sleep.wakeup_time = clock_systime() + seconds * 1000;
174 llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
176 __current->intr_ctx.registers.eax = seconds;
177 __current->state = PS_BLOCKED;
181 __DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
183 time_t prev_ddl = __current->sleep.alarm_time;
184 time_t now = clock_systime();
186 __current->sleep.alarm_time = seconds ? now + seconds * 1000 : 0;
188 struct proc_info* root_proc = sched_ctx._procs[0];
189 if (llist_empty(&__current->sleep.sleepers)) {
190 llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
193 return prev_ddl ? (prev_ddl - now) / 1000 : 0;
196 __DEFINE_LXSYSCALL1(void, exit, int, status)
198 terminate_proc(status);
202 __DEFINE_LXSYSCALL(void, yield)
208 _wait(pid_t wpid, int* status, int options);
210 __DEFINE_LXSYSCALL1(pid_t, wait, int*, status)
212 return _wait(-1, status, 0);
215 __DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options)
217 return _wait(pid, status, options);
220 __DEFINE_LXSYSCALL(int, geterrno)
222 return __current->k_status;
226 _wait(pid_t wpid, int* status, int options)
228 pid_t cur = __current->pid;
229 int status_flags = 0;
230 struct proc_info *proc, *n;
231 if (llist_empty(&__current->children)) {
235 wpid = wpid ? wpid : -__current->pgid;
237 llist_for_each(proc, n, &__current->children, siblings)
239 if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) {
240 if (proc->state == PS_TERMNAT && !options) {
241 status_flags |= PEXITTERM;
244 if (proc->state == PS_READY && (options & WUNTRACED)) {
245 status_flags |= PEXITSTOP;
250 if ((options & WNOHANG)) {
258 status_flags |= PEXITSIG * (proc->sig_inprogress != 0);
260 *status = proc->exit_code | status_flags;
262 return destroy_process(proc->pid);
269 for (; i < sched_ctx.ptable_len && sched_ctx._procs[i]; i++)
272 if (i == MAX_PROCESS) {
273 panick("Panic in Ponyville shimmer!");
276 if (i == sched_ctx.ptable_len) {
277 sched_ctx.ptable_len++;
280 struct proc_info* proc = cake_grab(proc_pile);
282 proc->state = PS_CREATED;
284 proc->created = clock_systime();
285 proc->pgid = proc->pid;
286 proc->fdtable = vzalloc(sizeof(struct v_fdtable));
288 llist_init_head(&proc->mm.regions.head);
289 llist_init_head(&proc->children);
290 llist_init_head(&proc->grp_member);
291 llist_init_head(&proc->sleep.sleepers);
292 waitq_init(&proc->waitqueue);
294 sched_ctx._procs[i] = proc;
300 commit_process(struct proc_info* process)
302 assert(process == sched_ctx._procs[process->pid]);
304 if (process->state != PS_CREATED) {
305 __current->k_status = EINVAL;
309 // every process is the child of first process (pid=1)
310 if (!process->parent) {
311 process->parent = sched_ctx._procs[1];
314 llist_append(&process->parent->children, &process->siblings);
316 process->state = PS_READY;
319 // from <kernel/process.c>
321 __del_pagetable(pid_t pid, uintptr_t mount_point);
324 destroy_process(pid_t pid)
327 if (index <= 0 || index > sched_ctx.ptable_len) {
328 __current->k_status = EINVAL;
331 struct proc_info* proc = sched_ctx._procs[index];
332 sched_ctx._procs[index] = 0;
334 llist_delete(&proc->siblings);
336 for (size_t i = 0; i < VFS_MAX_FD; i++) {
337 struct v_fd* fd = proc->fdtable->fds[i];
342 vfree(proc->fdtable);
344 struct mm_region *pos, *n;
345 llist_for_each(pos, n, &proc->mm.regions.head, head)
350 vmm_mount_pd(PD_MOUNT_1, proc->page_table);
352 __del_pagetable(pid, PD_MOUNT_1);
354 vmm_unmount_pd(PD_MOUNT_1);
356 cake_release(proc_pile, proc);
362 terminate_proc(int exit_code)
364 __current->state = PS_TERMNAT;
365 __current->exit_code = exit_code;
367 __SIGSET(__current->parent->sig_pending, _SIGCHLD);
371 get_process(pid_t pid)
374 if (index < 0 || index > sched_ctx.ptable_len) {
377 return sched_ctx._procs[index];
381 orphaned_proc(pid_t pid)
385 if (pid >= sched_ctx.ptable_len)
387 struct proc_info* proc = sched_ctx._procs[pid];
388 struct proc_info* parent = proc->parent;
390 // 如果其父进程的状态是terminated 或 destroy中的一种
391 // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
392 return PROC_TERMINATED(parent->state) || parent->created > proc->created;