#include #include #include #include #include void vmm_init() { // XXX: something here? } x86_page_table* vmm_init_pd() { x86_page_table* dir = (x86_page_table*)pmm_alloc_page(KERNEL_PID, PP_FGPERSIST); for (size_t i = 0; i < PG_MAX_ENTRIES; i++) { dir->entry[i] = PTE_NULL; } // 递归映射,方便我们在软件层面进行查表地址转换 dir->entry[PG_MAX_ENTRIES - 1] = NEW_L1_ENTRY(T_SELF_REF_PERM, dir); return dir; } int __vmm_map_internal(pid_t pid, uint32_t l1_inx, uint32_t l2_inx, uintptr_t pa, pt_attr attr, int forced) { x86_page_table* l1pt = (x86_page_table*)L1_BASE_VADDR; x86_page_table* l2pt = (x86_page_table*)L2_VADDR(l1_inx); // See if attr make sense assert(attr <= 128); if (!l1pt->entry[l1_inx]) { x86_page_table* new_l1pt_pa = pmm_alloc_page(pid, PP_FGPERSIST); // 物理内存已满! if (!new_l1pt_pa) { return 0; } // This must be writable l1pt->entry[l1_inx] = NEW_L1_ENTRY(attr | PG_WRITE, new_l1pt_pa); memset((void*)L2_VADDR(l1_inx), 0, PG_SIZE); } x86_pte_t l2pte = l2pt->entry[l2_inx]; if (l2pte) { if (!forced) { return 0; } } if ((HAS_FLAGS(attr, PG_PRESENT))) { // add one on reference count, regardless of existence. pmm_ref_page(pid, pa); } l2pt->entry[l2_inx] = NEW_L2_ENTRY(attr, pa); return 1; } void* vmm_map_page(pid_t pid, void* va, void* pa, pt_attr tattr) { // 显然,对空指针进行映射没有意义。 if (!pa || !va) { return NULL; } assert(((uintptr_t)va & 0xFFFU) == 0) assert(((uintptr_t)pa & 0xFFFU) == 0); uint32_t l1_index = L1_INDEX(va); uint32_t l2_index = L2_INDEX(va); x86_page_table* l1pt = (x86_page_table*)L1_BASE_VADDR; // 在页表与页目录中找到一个可用的空位进行映射(位于va或其附近) x86_pte_t l1pte = l1pt->entry[l1_index]; x86_page_table* l2pt = (x86_page_table*)L2_VADDR(l1_index); while (l1pte && l1_index < PG_MAX_ENTRIES) { if (l2_index == PG_MAX_ENTRIES) { l1_index++; l2_index = 0; l1pte = l1pt->entry[l1_index]; l2pt = (x86_page_table*)L2_VADDR(l1_index); } // 页表有空位,只需要开辟一个新的 PTE (Level 2) if (__vmm_map_internal(pid, l1_index, l2_index, pa, tattr, false)) { return (void*)V_ADDR(l1_index, l2_index, PG_OFFSET(va)); } l2_index++; } // 页目录与所有页表已满! if (l1_index > PG_MAX_ENTRIES) { return NULL; } if (!__vmm_map_internal(pid, l1_index, l2_index, (uintptr_t)pa, tattr, false)) { return NULL; } return (void*)V_ADDR(l1_index, l2_index, PG_OFFSET(va)); } void* vmm_fmap_page(pid_t pid, void* va, void* pa, pt_attr tattr) { if (!pa || !va) { return NULL; } assert(((uintptr_t)va & 0xFFFU) == 0) assert(((uintptr_t)pa & 0xFFFU) == 0); uint32_t l1_index = L1_INDEX(va); uint32_t l2_index = L2_INDEX(va); if (!__vmm_map_internal(pid, l1_index, l2_index, (uintptr_t)pa, tattr, true)) { return NULL; } cpu_invplg(va); return va; } void* vmm_alloc_page(pid_t pid, void* vpn, void** pa, pt_attr tattr, pp_attr_t pattr) { void* pp = pmm_alloc_page(pid, pattr); void* result = vmm_map_page(pid, vpn, pp, tattr); if (!result) { pmm_free_page(pp, pid); } pa ? (*pa = pp) : 0; return result; } int vmm_alloc_pages(pid_t pid, void* va, size_t sz, pt_attr tattr, pp_attr_t pattr) { assert((uintptr_t)va % PG_SIZE == 0) assert(sz % PG_SIZE == 0); void* va_ = va; for (size_t i = 0; i < (sz >> PG_SIZE_BITS); i++, va_ += PG_SIZE) { void* pp = pmm_alloc_page(pid, pattr); uint32_t l1_index = L1_INDEX(va_); uint32_t l2_index = L2_INDEX(va_); if (!pp || !__vmm_map_internal( pid, l1_index, l2_index, (uintptr_t)pp, tattr, false)) { // if one failed, release previous allocated pages. va_ = va; for (size_t j = 0; j < i; j++, va_ += PG_SIZE) { vmm_unmap_page(pid, va_); } return false; } } return true; } int vmm_set_mapping(pid_t pid, void* va, void* pa, pt_attr attr) { assert(((uintptr_t)va & 0xFFFU) == 0); uint32_t l1_index = L1_INDEX(va); uint32_t l2_index = L2_INDEX(va); // prevent map of recursive mapping region if (l1_index == 1023) { return 0; } __vmm_map_internal(pid, l1_index, l2_index, (uintptr_t)pa, attr, false); return 1; } void __vmm_unmap_internal(pid_t pid, void* va, int free_ppage) { assert(((uintptr_t)va & 0xFFFU) == 0); uint32_t l1_index = L1_INDEX(va); uint32_t l2_index = L2_INDEX(va); // prevent unmap of recursive mapping region if (l1_index == 1023) { return; } x86_page_table* l1pt = (x86_page_table*)L1_BASE_VADDR; x86_pte_t l1pte = l1pt->entry[l1_index]; if (l1pte) { x86_page_table* l2pt = (x86_page_table*)L2_VADDR(l1_index); x86_pte_t l2pte = l2pt->entry[l2_index]; if (IS_CACHED(l2pte) && free_ppage) { pmm_free_page(pid, (void*)l2pte); } cpu_invplg(va); l2pt->entry[l2_index] = PTE_NULL; } } void vmm_unset_mapping(void* va) { __vmm_unmap_internal(0, va, false); } void vmm_unmap_page(pid_t pid, void* va) { __vmm_unmap_internal(pid, va, true); } v_mapping vmm_lookup(void* va) { assert(((uintptr_t)va & 0xFFFU) == 0); uint32_t l1_index = L1_INDEX(va); uint32_t l2_index = L2_INDEX(va); x86_page_table* l1pt = (x86_page_table*)L1_BASE_VADDR; x86_pte_t l1pte = l1pt->entry[l1_index]; v_mapping mapping = { .flags = 0, .pa = 0, .pn = 0 }; if (l1pte) { x86_pte_t* l2pte = &((x86_page_table*)L2_VADDR(l1_index))->entry[l2_index]; if (l2pte) { mapping.flags = PG_ENTRY_FLAGS(*l2pte); mapping.pa = PG_ENTRY_ADDR(*l2pte); mapping.pn = mapping.pa >> PG_SIZE_BITS; mapping.pte = l2pte; } } return mapping; } void* vmm_v2p(void* va) { return (void*)vmm_lookup(va).pa; } void* vmm_mount_pd(void* pde) { x86_page_table* l1pt = (x86_page_table*)L1_BASE_VADDR; l1pt->entry[(PD_MOUNT >> 22)] = NEW_L1_ENTRY(PG_PREM_RW, pde); return PD_MOUNT; } void* vmm_unmount_pd() { x86_page_table* l1pt = (x86_page_table*)L1_BASE_VADDR; l1pt->entry[(PD_MOUNT >> 22)] = 0; }