/** * @file pci.c * @author Lunaixsky (zelong56@gmail.com) * @brief A software implementation of PCI Local Bus Specification Revision 3.0 * @version 0.1 * @date 2022-06-28 * * @copyright Copyright (c) 2022 * */ #include #include #include #include #include #include LOG_MODULE("PCI") /* device instance for pci bridge, currently, lunaix only support one bridge controller. */ static struct device* pci_bridge; static morph_t* pci_probers; static DECLARE_HASHTABLE(pci_drivers, 8); static inline void pci_log_device(struct pci_probe* probe) { pciaddr_t loc = probe->loc; kprintf("pci.%03d:%02d:%02d, class=%p, vendor:dev=%04x:%04x", PCILOC_BUS(loc), PCILOC_DEV(loc), PCILOC_FN(loc), probe->class_info, PCI_DEV_VENDOR(probe->device_info), PCI_DEV_DEVID(probe->device_info)); } static void __pci_probe_msi_info(struct pci_probe* probe) { // Note that Virtualbox have to use ICH9 chipset for MSI support. // Qemu seems ok with default PIIX3, Bochs is pending to test... // See https://www.virtualbox.org/manual/ch03.html (section 3.5.1) pci_reg_t status = pci_read_cspace(probe->cspace_base, PCI_REG_STATUS_CMD) >> 16; if (!(status & 0x10)) { probe->msi_loc = 0; return; } pci_reg_t cap_ptr = pci_read_cspace(probe->cspace_base, 0x34) & 0xff; u32_t cap_hdr; while (cap_ptr) { cap_hdr = pci_read_cspace(probe->cspace_base, cap_ptr); if ((cap_hdr & 0xff) == 0x5) { // MSI probe->msi_loc = cap_ptr; return; } cap_ptr = (cap_hdr >> 8) & 0xff; } } static void __pci_probe_bar_info(struct pci_probe* probe) { u32_t bar; struct pci_base_addr* ba; for (size_t i = 0; i < PCI_BAR_COUNT; i++) { ba = &probe->bar[i]; ba->size = pci_bar_sizing(probe, &bar, i + 1); if (PCI_BAR_MMIO(bar)) { ba->start = PCI_BAR_ADDR_MM(bar); ba->type |= PCI_BAR_CACHEABLE(bar) ? BAR_TYPE_CACHABLE : 0; ba->type |= BAR_TYPE_MMIO; } else { ba->start = PCI_BAR_ADDR_IO(bar); } } } static void __pci_add_prober(pciaddr_t loc, ptr_t pci_base, int devinfo) { struct pci_probe* prober; morph_t* probe_morph; pci_reg_t class = pci_read_cspace(pci_base, 0x8); u32_t devid = PCI_DEV_DEVID(devinfo); u32_t vendor = PCI_DEV_VENDOR(devinfo); pci_reg_t intr = pci_read_cspace(pci_base, 0x3c); prober = vzalloc(sizeof(*prober)); prober->class_info = class; prober->device_info = devinfo; prober->cspace_base = pci_base; prober->intr_info = intr; prober->loc = loc; prober->irq_domain = irq_get_domain(pci_bridge); changeling_morph_anon(pci_probers, prober->mobj, pci_probe_morpher); __pci_probe_msi_info(prober); __pci_probe_bar_info(prober); pci_log_device(prober); } static int __pci_bind(struct pci_registry* reg, struct pci_probe* probe) { int errno; struct device_def* devdef; if (probe->bind) { return EEXIST; } if (!reg->check_compact(probe)) { return EINVAL; } devdef = reg->definition; errno = devdef->create(devdef, &probe->mobj); if (errno) { ERROR("pci_loc:%x, bind (%xh:%xh.%d) failed, e=%d", probe->loc, devdef->class.fn_grp, devdef->class.device, devdef->class.variant, errno); } return errno; } int pci_bind_driver(struct pci_registry* reg) { struct pci_probe* probe; int errno = 0; morph_t *pos, *n; changeling_for_each(pos, n, pci_probers) { probe = changeling_reveal(pos, pci_probe_morpher); errno = __pci_bind(reg, probe); if (errno) { continue; } } return errno; } void pci_probe_device(pciaddr_t pci_loc) { u32_t base = PCI_CFGADDR(pci_loc); pci_reg_t reg1 = pci_read_cspace(base, 0); // Vendor=0xffff则表示设备不存在 if (PCI_DEV_VENDOR(reg1) == PCI_VENDOR_INVLD) { return; } pci_reg_t hdr_type = pci_read_cspace(base, 0xc); hdr_type = (hdr_type >> 16) & 0xff; // 防止堆栈溢出 // QEMU的ICH9/Q35实现似乎有点问题,对于多功能设备的每一个功能的header type // 都将第七位置位。而virtualbox 就没有这个毛病。 if ((hdr_type & 0x80) && PCILOC_FN(pci_loc) == 0) { hdr_type = hdr_type & ~0x80; // 探测多用途设备(multi-function device) for (int i = 1; i < 7; i++) { pci_probe_device(pci_loc + i); } } struct pci_probe* prober; morph_t *pos, *n; changeling_for_each(pos, n, pci_probers) { prober = changeling_reveal(pos, pci_probe_morpher); if (prober->loc == pci_loc) { pci_log_device(prober); return; } } __pci_add_prober(pci_loc, base, reg1); } static struct pci_registry* __pci_registry_get(struct device_def* def) { struct pci_registry *pos, *n; unsigned int hash; hash = hash_32(__ptr(def), HSTR_FULL_HASH); hashtable_hash_foreach(pci_drivers, hash, pos, n, entries) { if (pos->definition == def) { return pos; } } return NULL; } static int __pci_proxied_devdef_load(struct device_def* def) { struct pci_registry* reg; int errno = 0; reg = __pci_registry_get(def); assert(reg); return pci_bind_driver(reg); } bool pci_register_driver(struct device_def* def, pci_id_checker_t checker) { struct pci_registry* reg; unsigned int hash; if (!checker) { return false; } if (__pci_registry_get(def)) { return false; } reg = valloc(sizeof(*reg)); *reg = (struct pci_registry) { .check_compact = checker, .definition = def, }; device_chain_loader(def, __pci_proxied_devdef_load); hash = hash_32(__ptr(def), HSTR_FULL_HASH); hashtable_hash_in(pci_drivers, ®->entries, hash); return true; } void pci_scan() { for (u32_t loc = 0; loc < (pciaddr_t)-1; loc += 8) { pci_probe_device((pciaddr_t)loc); } } static void __pci_config_msi(struct pci_probe* probe, irq_t irq) { // PCI LB Spec. (Rev 3) Section 6.8 & 6.8.1 ptr_t msi_addr = irq->msi->wr_addr; u32_t msi_data = irq->msi->message; pci_reg_t reg1 = pci_read_cspace(probe->cspace_base, probe->msi_loc); pci_reg_t msg_ctl = reg1 >> 16; int offset_cap64 = !!(msg_ctl & MSI_CAP_64BIT) * 4; pci_write_cspace(probe->cspace_base, PCI_MSI_ADDR_LO(probe->msi_loc), msi_addr); if (offset_cap64) { pci_write_cspace(probe->cspace_base, PCI_MSI_ADDR_HI(probe->msi_loc), (u64_t)msi_addr >> 32); } pci_write_cspace(probe->cspace_base, PCI_MSI_DATA(probe->msi_loc, offset_cap64), msi_data & 0xffff); if ((msg_ctl & MSI_CAP_MASK)) { pci_write_cspace( probe->cspace_base, PCI_MSI_MASK(probe->msi_loc, offset_cap64), 0); } // manipulate the MSI_CTRL to allow device using MSI to request service. reg1 = (reg1 & 0xff8fffff) | 0x10000; pci_write_cspace(probe->cspace_base, probe->msi_loc, reg1); } irq_t pci_declare_msi_irq(irq_servant callback, struct pci_probe* probe) { return irq_declare_msg(callback, probe->loc, probe->loc); } int pci_assign_msi(struct pci_probe* probe, irq_t irq, void* irq_spec) { int err = 0; assert(irq->type == IRQ_MESSAGE); err = irq_assign(probe->irq_domain, irq, irq_spec); if (err) { return err; } __pci_config_msi(probe, irq); return 0; } size_t pci_bar_sizing(struct pci_probe* probe, u32_t* bar_out, u32_t bar_num) { pci_reg_t sized, bar; bar = pci_read_cspace(probe->cspace_base, PCI_REG_BAR(bar_num)); if (!bar) { *bar_out = 0; return 0; } pci_write_cspace(probe->cspace_base, PCI_REG_BAR(bar_num), 0xffffffff); sized = pci_read_cspace(probe->cspace_base, PCI_REG_BAR(bar_num)) & ~0x1; if (PCI_BAR_MMIO(bar)) { sized = PCI_BAR_ADDR_MM(sized); } *bar_out = bar; pci_write_cspace(probe->cspace_base, PCI_REG_BAR(bar_num), bar); return ~sized + 1; } void pci_apply_command(struct pci_probe* probe, pci_reg_t cmd) { pci_reg_t rcmd; ptr_t base; base = probe->cspace_base; rcmd = pci_read_cspace(base, PCI_REG_STATUS_CMD); cmd = cmd & 0xffff; rcmd = (rcmd & 0xffff0000) | cmd; pci_write_cspace(base, PCI_REG_STATUS_CMD, rcmd); } static void __pci_read_cspace(struct twimap* map) { struct pci_probe* probe; probe = twimap_data(map, struct pci_probe*); for (size_t i = 0; i < 256; i += sizeof(pci_reg_t)) { *(pci_reg_t*)(map->buffer + i) = pci_read_cspace(probe->cspace_base, i); } map->size_acc = 256; } /*---------- TwiFS interface definition ----------*/ static void __pci_read_revid(struct twimap* map) { struct pci_probe* probe; probe = twimap_data(map, struct pci_probe*); twimap_printf(map, "0x%x", PCI_DEV_REV(probe->class_info)); } static void __pci_read_class(struct twimap* map) { struct pci_probe* probe; probe = twimap_data(map, struct pci_probe*); twimap_printf(map, "0x%x", PCI_DEV_CLASS(probe->class_info)); } static void __pci_read_devinfo(struct twimap* map) { struct pci_probe* probe; probe = twimap_data(map, struct pci_probe*); twimap_printf(map, "%x:%x", PCI_DEV_VENDOR(probe->device_info), PCI_DEV_DEVID(probe->device_info)); } static void __pci_bar_read(struct twimap* map) { struct pci_probe* probe; int bar_index; probe = twimap_data(map, struct pci_probe*); bar_index = twimap_index(map, int); struct pci_base_addr* bar = &probe->bar[bar_index]; if (!bar->start && !bar->size) { twimap_printf(map, "[%d] not present \n", bar_index); return; } twimap_printf( map, "[%d] base=%.8p, size=%.8p, ", bar_index, bar->start, bar->size); if ((bar->type & BAR_TYPE_MMIO)) { twimap_printf(map, "mmio"); if ((bar->type & BAR_TYPE_CACHABLE)) { twimap_printf(map, ", prefetchable"); } } else { twimap_printf(map, "io"); } twimap_printf(map, "\n"); } static int __pci_bar_gonext(struct twimap* map) { if (twimap_index(map, int) >= 5) { return 0; } map->index += 1; return 1; } static void __pci_read_binding(struct twimap* map) { struct pci_probe* probe; struct devident* devid; probe = twimap_data(map, struct pci_probe*); if (!probe->bind) { return; } devid = &probe->bind->ident; twimap_printf(map, "%xh:%xh.%d", devid->fn_grp, DEV_KIND_FROM(devid->unique), DEV_VAR_FROM(devid->unique)); } static void __pci_trigger_bus_rescan(struct twimap* map) { pci_scan(); } void pci_build_fsmapping() { struct twifs_node *pci_class = twifs_dir_node(NULL, "pci"), *pci_dev; struct twimap* map; struct pci_probe* probe; morph_t *pos, *n; // TODO bus rescan is not ready yet // map = twifs_mapping(pci_class, NULL, "rescan"); // map->read = __pci_trigger_bus_rescan; changeling_for_each(pos, n, pci_probers) { probe = changeling_reveal(pos, pci_probe_morpher); pci_dev = twifs_dir_node(pci_class, "%x", probe->loc); map = twifs_mapping(pci_dev, probe, "config"); map->read = __pci_read_cspace; map = twifs_mapping(pci_dev, probe, "revision"); map->read = __pci_read_revid; map = twifs_mapping(pci_dev, probe, "class"); map->read = __pci_read_class; map = twifs_mapping(pci_dev, probe, "binding"); map->read = __pci_read_binding; map = twifs_mapping(pci_dev, probe, "io_bases"); map->read = __pci_bar_read; map->go_next = __pci_bar_gonext; } } EXPORT_TWIFS_PLUGIN(pci_devs, pci_build_fsmapping); /*---------- PCI 3.0 HBA device definition ----------*/ static int __pci_irq_install(struct irq_domain* domain, irq_t irq) { struct irq_domain* parent; int err; parent = domain->parent; err = parent->ops->install_irq(parent, irq); if (err) { return err; } if (irq->type == IRQ_MESSAGE) { irq->msi->message = irq->vector; } return 0; } static struct irq_domain_ops pci_irq_ops = { .install_irq = __pci_irq_install }; static int pci_register(struct device_def* def) { pci_probers = changeling_spawn(NULL, "pci_realm"); return 0; } static int pci_create(struct device_def* def, morph_t* obj) { struct irq_domain *pci_domain; pci_bridge = device_allocsys(NULL, NULL); #ifdef CONFIG_USE_DEVICETREE devtree_link_t devtree_node; devtree_node = changeling_try_reveal(obj, dt_node_morpher); device_set_devtree_node(pci_bridge, devtree_node); #endif pci_domain = irq_create_domain(pci_bridge, &pci_irq_ops); irq_attach_domain(irq_get_default_domain(), pci_domain); register_device(pci_bridge, &def->class, "pci_bridge"); pci_scan(); return 0; } static struct device_def pci_def = { def_device_name("Generic PCI"), def_device_class(GENERIC, BUSIF, PCI), def_on_register(pci_register), def_on_create(pci_create) }; EXPORT_DEVICE(pci3hba, &pci_def, load_onboot);