/** * @file kalloc.c * @author Lunaixsky * @brief Implicit free list implementation of malloc family, for kernel use. * * This version of code is however the simplest and yet insecured, thread unsafe * it just to demonstrate how the malloc/free works behind the curtain * @version 0.1 * @date 2022-03-05 * * @copyright Copyright (c) 2022 * */ #include #include #include #include #include #include extern uint8_t __kernel_heap_start; void* lx_malloc_internal(heap_context_t* heap, size_t size); void place_chunk(uint8_t* ptr, size_t size); void lx_free_internal(void* ptr); void* coalesce(uint8_t* chunk_ptr); void* lx_grow_heap(heap_context_t* heap, size_t sz); /* At the beginning, we allocate an empty page and put our initial marker | 4/1 | 0/1 | ^ ^ brk start Then, expand the heap further, with HEAP_INIT_SIZE (evaluated to 4096, i.e., 1 pg size) This will allocate as much pages and override old epilogue marker with a free region hdr and put new epilogue marker. These are handled by lx_grow_heap which is internally used by alloc to expand the heap at many moment when needed. | 4/1 | 4096/0 | ....... | 4096/0 | 0/1 | ^ ^ brk_old ^ start brk Note: the brk always point to the beginning of epilogue. */ int kalloc_init() { heap_context_t* kheap = &__current->mm.k_heap; kheap->start = &__kernel_heap_start; kheap->brk = NULL; kheap->max_addr = (void*)KSTACK_START; if (!dmm_init(kheap)) { return 0; } SW(kheap->start, PACK(4, M_ALLOCATED)); SW(kheap->start + WSIZE, PACK(0, M_ALLOCATED)); kheap->brk += WSIZE; return lx_grow_heap(kheap, HEAP_INIT_SIZE) != NULL; } void* lxmalloc(size_t size) { return lx_malloc_internal(&__current->mm.k_heap, size); } void* lxcalloc(size_t n, size_t elem) { size_t pd = n * elem; // overflow detection if (pd < elem || pd < n) { return NULL; } void* ptr = lxmalloc(pd); if (!ptr) { return NULL; } return memset(ptr, 0, pd); } void lxfree(void* ptr) { if (!ptr) { return; } uint8_t* chunk_ptr = (uint8_t*)ptr - WSIZE; uint32_t hdr = LW(chunk_ptr); size_t sz = CHUNK_S(hdr); uint8_t* next_hdr = chunk_ptr + sz; // make sure the ptr we are 'bout to free makes sense // the size trick is stolen from glibc's malloc/malloc.c:4437 ;P assert_msg(((uintptr_t)ptr < (uintptr_t)(-sz)) && !((uintptr_t)ptr & 0x3), "free(): invalid pointer"); assert_msg(sz > WSIZE, "free(): invalid size"); SW(chunk_ptr, hdr & ~M_ALLOCATED); SW(FPTR(chunk_ptr, sz), hdr & ~M_ALLOCATED); SW(next_hdr, LW(next_hdr) | M_PREV_FREE); coalesce(chunk_ptr); } void* lx_malloc_internal(heap_context_t* heap, size_t size) { // Simplest first fit approach. if (!size) { return NULL; } uint8_t* ptr = heap->start; // round to largest 4B aligned value // and space for header size = ROUNDUP(size + WSIZE, BOUNDARY); while (ptr < (uint8_t*)heap->brk) { uint32_t header = *((uint32_t*)ptr); size_t chunk_size = CHUNK_S(header); if (!chunk_size && CHUNK_A(header)) { break; } if (chunk_size >= size && !CHUNK_A(header)) { // found! place_chunk(ptr, size); return BPTR(ptr); } ptr += chunk_size; } // if heap is full (seems to be!), then allocate more space (if it's // okay...) if ((ptr = lx_grow_heap(heap, size))) { place_chunk(ptr, size); return BPTR(ptr); } // Well, we are officially OOM! return NULL; } void place_chunk(uint8_t* ptr, size_t size) { uint32_t header = *((uint32_t*)ptr); size_t chunk_size = CHUNK_S(header); *((uint32_t*)ptr) = PACK(size, CHUNK_PF(header) | M_ALLOCATED); uint8_t* n_hdrptr = (uint8_t*)(ptr + size); uint32_t diff = chunk_size - size; if (!diff) { // if the current free block is fully occupied uint32_t n_hdr = LW(n_hdrptr); // notify the next block about our avaliability SW(n_hdrptr, n_hdr & ~0x2); } else { // if there is remaining free space left uint32_t remainder_hdr = PACK(diff, M_NOT_ALLOCATED | M_PREV_ALLOCATED); SW(n_hdrptr, remainder_hdr); SW(FPTR(n_hdrptr, diff), remainder_hdr); /* | xxxx | | | | v | xxxx | | */ coalesce(n_hdrptr); } } void* coalesce(uint8_t* chunk_ptr) { uint32_t hdr = LW(chunk_ptr); uint32_t pf = CHUNK_PF(hdr); uint32_t sz = CHUNK_S(hdr); uint32_t n_hdr = LW(chunk_ptr + sz); if (CHUNK_A(n_hdr) && pf) { // case 1: prev is free uint32_t prev_ftr = LW(chunk_ptr - WSIZE); size_t prev_chunk_sz = CHUNK_S(prev_ftr); uint32_t new_hdr = PACK(prev_chunk_sz + sz, CHUNK_PF(prev_ftr)); SW(chunk_ptr - prev_chunk_sz, new_hdr); SW(FPTR(chunk_ptr, sz), new_hdr); chunk_ptr -= prev_chunk_sz; } else if (!CHUNK_A(n_hdr) && !pf) { // case 2: next is free size_t next_chunk_sz = CHUNK_S(n_hdr); uint32_t new_hdr = PACK(next_chunk_sz + sz, pf); SW(chunk_ptr, new_hdr); SW(FPTR(chunk_ptr, sz + next_chunk_sz), new_hdr); } else if (!CHUNK_A(n_hdr) && pf) { // case 3: both free uint32_t prev_ftr = LW(chunk_ptr - WSIZE); size_t next_chunk_sz = CHUNK_S(n_hdr); size_t prev_chunk_sz = CHUNK_S(prev_ftr); uint32_t new_hdr = PACK(next_chunk_sz + prev_chunk_sz + sz, CHUNK_PF(prev_ftr)); SW(chunk_ptr - prev_chunk_sz, new_hdr); SW(FPTR(chunk_ptr, sz + next_chunk_sz), new_hdr); chunk_ptr -= prev_chunk_sz; } // (fall through) case 4: prev and next are not free return chunk_ptr; } void* lx_grow_heap(heap_context_t* heap, size_t sz) { void* start; // The "+ WSIZE" capture the overhead for epilogue marker if (!(start = lxbrk(heap, sz + WSIZE))) { return NULL; } sz = ROUNDUP(sz, BOUNDARY); // minus the overhead for epilogue, keep the invariant. heap->brk -= WSIZE; uint32_t old_marker = *((uint32_t*)start); uint32_t free_hdr = PACK(sz, CHUNK_PF(old_marker)); SW(start, free_hdr); SW(FPTR(start, sz), free_hdr); SW(NEXT_CHK(start), PACK(0, M_ALLOCATED | M_PREV_FREE)); return coalesce(start); }