/** * @file dmm.c * @author Lunaixsky * @brief Dynamic memory manager dedicated to kernel heap. Using implicit free * list implementation. This is designed to be portable, so it can serve as * syscalls to malloc/free in the c std lib. * * This version of code is however the simplest and yet insecured, * it just to demonstrate how the malloc/free works behind the stage * * @version 0.2 * @date 2022-03-3 * * @copyright Copyright (c) Lunaixsky 2022 * */ #include #include #include #include #include #define M_ALLOCATED 0x1 #define M_PREV_FREE 0x2 #define M_NOT_ALLOCATED 0x0 #define M_PREV_ALLOCATED 0x0 #define CHUNK_S(header) ((header) & ~0x3) #define CHUNK_PF(header) ((header)&M_PREV_FREE) #define CHUNK_A(header) ((header)&M_ALLOCATED) #define PACK(size, flags) (((size) & ~0x3) | (flags)) #define SW(p, w) (*((uint32_t*)(p)) = w) #define LW(p) (*((uint32_t*)(p))) #define HPTR(bp) ((uint32_t*)(bp)-1) #define BPTR(bp) ((uint8_t*)(bp) + WSIZE) #define FPTR(hp, size) ((uint32_t*)(hp + size - WSIZE)) #define NEXT_CHK(hp) ((uint8_t*)(hp) + CHUNK_S(LW(hp))) #define BOUNDARY 4 #define WSIZE 4 void* coalesce(uint8_t* chunk_ptr); void* lx_grow_heap(heap_context_t* heap, size_t sz); void place_chunk(uint8_t* ptr, size_t size); int dmm_init(heap_context_t* heap) { assert((uintptr_t)heap->start % BOUNDARY == 0); heap->brk = heap->start; vmm_alloc_page(heap->brk, PG_PREM_RW); SW(heap->start, PACK(4, M_ALLOCATED)); SW(heap->start + WSIZE, PACK(0, M_ALLOCATED)); heap->brk += WSIZE; return lx_grow_heap(heap, HEAP_INIT_SIZE) != NULL; } int lxsbrk(heap_context_t* heap, void* addr) { return lxbrk(heap, addr - heap->brk) != NULL; } void* lxbrk(heap_context_t* heap, size_t size) { if (size == 0) { return heap->brk; } // The upper bound of our next brk of heap given the size. // This will be used to calculate the page we need to allocate. // The "+ WSIZE" capture the overhead for epilogue marker void* next = heap->brk + ROUNDUP(size + WSIZE, WSIZE); if ((uintptr_t)next >= K_STACK_START) { return NULL; } uintptr_t heap_top_pg = PG_ALIGN(heap->brk); if (heap_top_pg != PG_ALIGN(next)) { // if next do require new pages to be allocated if (!vmm_alloc_pages((void*)(heap_top_pg + PG_SIZE), ROUNDUP(size, PG_SIZE), PG_PREM_RW)) { return NULL; } } void* old = heap->brk; heap->brk += size; return old; } void* lx_grow_heap(heap_context_t* heap, size_t sz) { void* start; if (!(start = lxbrk(heap, sz))) { return NULL; } sz = ROUNDUP(sz, BOUNDARY); uint32_t old_marker = *((uint32_t*)start); uint32_t free_hdr = PACK(sz, CHUNK_PF(old_marker)); SW(start, free_hdr); SW(FPTR(start, sz), free_hdr); SW(NEXT_CHK(start), PACK(0, M_ALLOCATED | M_PREV_FREE)); return coalesce(start); } void* lx_malloc(heap_context_t* heap, size_t size) { // Simplest first fit approach. uint8_t* ptr = heap->start; // round to largest 4B aligned value // and space for header size = ROUNDUP(size, BOUNDARY) + WSIZE; while (ptr < (uint8_t*)heap->brk) { uint32_t header = *((uint32_t*)ptr); size_t chunk_size = CHUNK_S(header); if (chunk_size >= size && !CHUNK_A(header)) { // found! place_chunk(ptr, size); return BPTR(ptr); } ptr += chunk_size; } // if heap is full (seems to be!), then allocate more space (if it's // okay...) if ((ptr = lx_grow_heap(heap, size))) { place_chunk(ptr, size); return BPTR(ptr); } // Well, we are officially OOM! return NULL; } void place_chunk(uint8_t* ptr, size_t size) { uint32_t header = *((uint32_t*)ptr); size_t chunk_size = CHUNK_S(header); *((uint32_t*)ptr) = PACK(size, CHUNK_PF(header) | M_ALLOCATED); uint8_t* n_hdrptr = (uint8_t*)(ptr + size); uint32_t diff = chunk_size - size; if (!diff) { // if the current free block is fully occupied uint32_t n_hdr = LW(n_hdrptr); // notify the next block about our avaliability SW(n_hdrptr, n_hdr & ~0x2); } else { // if there is remaining free space left uint32_t remainder_hdr = PACK(diff, M_NOT_ALLOCATED | M_PREV_ALLOCATED); SW(n_hdrptr, remainder_hdr); SW(FPTR(n_hdrptr, diff), remainder_hdr); coalesce(n_hdrptr); } } void lx_free(void* ptr) { if (!ptr) { return; } uint8_t* chunk_ptr = (uint8_t*)ptr - WSIZE; uint32_t hdr = LW(chunk_ptr); size_t sz = CHUNK_S(hdr); uint8_t* next_hdr = chunk_ptr + sz; // make sure the ptr we are 'bout to free makes sense // the size trick comes from: // https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=1a1ac1d8f05b6f9bf295d7fdd0f12c2e4650a33c;hb=HEAD#l4437 assert_msg(((uintptr_t)ptr < (uintptr_t)(-sz)) && !((uintptr_t)ptr & ~0x3), "free(): invalid pointer"); assert_msg(sz > WSIZE && (sz & ~0x3), "free(): invalid size"); SW(chunk_ptr, hdr & ~M_ALLOCATED); SW(FPTR(chunk_ptr, sz), hdr & ~M_ALLOCATED); SW(next_hdr, LW(next_hdr) | M_PREV_FREE); coalesce(chunk_ptr); } void* coalesce(uint8_t* chunk_ptr) { uint32_t hdr = LW(chunk_ptr); uint32_t pf = CHUNK_PF(hdr); uint32_t sz = CHUNK_S(hdr); uint32_t n_hdr = LW(chunk_ptr + sz); if (CHUNK_A(n_hdr) && pf) { // case 1: prev is free uint32_t prev_ftr = LW(chunk_ptr - WSIZE); size_t prev_chunk_sz = CHUNK_S(prev_ftr); uint32_t new_hdr = PACK(prev_chunk_sz + sz, CHUNK_PF(prev_ftr)); SW(chunk_ptr - prev_chunk_sz, new_hdr); SW(FPTR(chunk_ptr, sz), new_hdr); chunk_ptr -= prev_chunk_sz; } else if (!CHUNK_A(n_hdr) && !pf) { // case 2: next is free size_t next_chunk_sz = CHUNK_S(n_hdr); uint32_t new_hdr = PACK(next_chunk_sz + sz, pf); SW(chunk_ptr, new_hdr); SW(FPTR(chunk_ptr, sz + next_chunk_sz), new_hdr); } else if (!CHUNK_A(n_hdr) && pf) { // case 3: both free uint32_t prev_ftr = LW(chunk_ptr - WSIZE); size_t next_chunk_sz = CHUNK_S(n_hdr); size_t prev_chunk_sz = CHUNK_S(prev_ftr); uint32_t new_hdr = PACK(next_chunk_sz + prev_chunk_sz + sz, CHUNK_PF(prev_ftr)); SW(chunk_ptr - prev_chunk_sz, new_hdr); SW(FPTR(chunk_ptr, sz + next_chunk_sz), new_hdr); chunk_ptr -= prev_chunk_sz; } // case 4: prev and next are not free return chunk_ptr; }