/** * @file dmm.c * @author Lunaixsky * @brief Dynamic memory manager dedicated to kernel heap. It is not portable at * this moment. Implicit free list implementation. * @version 0.1 * @date 2022-02-28 * * @copyright Copyright (c) Lunaixsky 2022 * */ // TODO: Make the dmm portable #include #include #include #include #include #define M_ALLOCATED 0x1 #define M_PREV_FREE 0x2 #define M_NOT_ALLOCATED 0x0 #define M_PREV_ALLOCATED 0x0 #define CHUNK_S(header) ((header) & ~0x3) #define CHUNK_PF(header) ((header)&M_PREV_FREE) #define CHUNK_A(header) ((header)&M_ALLOCATED) #define PACK(size, flags) (((size) & ~0x3) | (flags)) #define SW(p, w) (*((uint32_t*)(p)) = w) #define LW(p) (*((uint32_t*)(p))) #define HPTR(bp) ((uint32_t*)(bp)-1) #define BPTR(bp) ((uint8_t*)(bp) + WSIZE) #define FPTR(hp, size) ((uint32_t*)(hp + size - WSIZE)) #define NEXT_CHK(hp) ((uint8_t*)(hp) + CHUNK_S(LW(hp))) #define BOUNDARY 4 #define WSIZE 4 extern uint8_t __kernel_heap_start; void* current_heap_top = NULL; void* coalesce(uint8_t* chunk_ptr); void* lx_grow_heap(size_t sz); void place_chunk(uint8_t* ptr, size_t size); int dmm_init() { assert((uintptr_t)&__kernel_heap_start % BOUNDARY == 0); current_heap_top = &__kernel_heap_start; uint8_t* heap_start = &__kernel_heap_start; vmm_alloc_page(current_heap_top, PG_PREM_RW); SW(heap_start, PACK(4, M_ALLOCATED)); SW(heap_start + WSIZE, PACK(0, M_ALLOCATED)); current_heap_top += WSIZE; return lx_grow_heap(HEAP_INIT_SIZE) != NULL; } int lxsbrk(void* addr) { return lxbrk(addr - current_heap_top) != NULL; } void* lxbrk(size_t size) { if (size == 0) { return current_heap_top; } // plus WSIZE is the overhead for epilogue marker size += WSIZE; void* next = current_heap_top + ROUNDUP((uintptr_t)size, WSIZE); if ((uintptr_t)next >= K_STACK_START) { return NULL; } // Check the invariant assert(size % BOUNDARY == 0) uintptr_t heap_top_pg = PG_ALIGN(current_heap_top); if (heap_top_pg != PG_ALIGN(next)) { // if next do require new pages to be allocated if (!vmm_alloc_pages((void*)(heap_top_pg + PG_SIZE), ROUNDUP(size, PG_SIZE), PG_PREM_RW)) { return NULL; } } void* old = current_heap_top; current_heap_top = next - WSIZE; return old; } void* lx_grow_heap(size_t sz) { void* start; sz = ROUNDUP(sz, BOUNDARY); if (!(start = lxbrk(sz))) { return NULL; } uint32_t old_marker = *((uint32_t*)start); uint32_t free_hdr = PACK(sz, CHUNK_PF(old_marker)); SW(start, free_hdr); SW(FPTR(start, sz), free_hdr); SW(NEXT_CHK(start), PACK(0, M_ALLOCATED | M_PREV_FREE)); return coalesce(start); } void* lx_malloc(size_t size) { // Simplest first fit approach. uint8_t* ptr = &__kernel_heap_start; // round to largest 4B aligned value // and space for header size = ROUNDUP(size, BOUNDARY) + WSIZE; while (ptr < (uint8_t*)current_heap_top) { uint32_t header = *((uint32_t*)ptr); size_t chunk_size = CHUNK_S(header); if (chunk_size >= size && !CHUNK_A(header)) { // found! place_chunk(ptr, size); return BPTR(ptr); } ptr += chunk_size; } // if heap is full (seems to be!), then allocate more space (if it's okay...) if ((ptr = lx_grow_heap(size))) { place_chunk(ptr, size); return BPTR(ptr); } // Well, we are officially OOM! return NULL; } void place_chunk(uint8_t* ptr, size_t size) { uint32_t header = *((uint32_t*)ptr); size_t chunk_size = CHUNK_S(header); *((uint32_t*)ptr) = PACK(size, CHUNK_PF(header) | M_ALLOCATED); uint8_t* n_hdrptr = (uint8_t*)(ptr + size); uint32_t diff = chunk_size - size; if (!diff) { // if the current free block is fully occupied uint32_t n_hdr = LW(n_hdrptr); // notify the next block about our avaliability SW(n_hdrptr, n_hdr & ~0x2); } else { // if there is remaining free space left uint32_t remainder_hdr = PACK(diff, M_NOT_ALLOCATED | M_PREV_ALLOCATED); SW(n_hdrptr, remainder_hdr); SW(FPTR(n_hdrptr, diff), remainder_hdr); coalesce(n_hdrptr); } } void lx_free(void* ptr) { if (!ptr) { return; } uint8_t* chunk_ptr = (uint8_t*)ptr - WSIZE; uint32_t hdr = LW(chunk_ptr); uint8_t* next_hdr = chunk_ptr + CHUNK_S(hdr); SW(chunk_ptr, hdr & ~M_ALLOCATED); SW(FPTR(chunk_ptr, CHUNK_S(hdr)), hdr & ~M_ALLOCATED); SW(next_hdr, LW(next_hdr) | M_PREV_FREE); coalesce(chunk_ptr); } void* coalesce(uint8_t* chunk_ptr) { uint32_t hdr = LW(chunk_ptr); uint32_t pf = CHUNK_PF(hdr); uint32_t sz = CHUNK_S(hdr); uint32_t n_hdr = LW(chunk_ptr + sz); if (CHUNK_A(n_hdr) && pf) { // case 1: prev is free uint32_t prev_ftr = LW(chunk_ptr - WSIZE); size_t prev_chunk_sz = CHUNK_S(prev_ftr); uint32_t new_hdr = PACK(prev_chunk_sz + sz, CHUNK_PF(prev_ftr)); SW(chunk_ptr - prev_chunk_sz, new_hdr); SW(FPTR(chunk_ptr, sz), new_hdr); chunk_ptr -= prev_chunk_sz; } else if (!CHUNK_A(n_hdr) && !pf) { // case 2: next is free size_t next_chunk_sz = CHUNK_S(n_hdr); uint32_t new_hdr = PACK(next_chunk_sz + sz, pf); SW(chunk_ptr, new_hdr); SW(FPTR(chunk_ptr, sz + next_chunk_sz), new_hdr); } else if (!CHUNK_A(n_hdr) && pf) { // case 3: both free uint32_t prev_ftr = LW(chunk_ptr - WSIZE); size_t next_chunk_sz = CHUNK_S(n_hdr); size_t prev_chunk_sz = CHUNK_S(prev_ftr); uint32_t new_hdr = PACK(next_chunk_sz + prev_chunk_sz + sz, CHUNK_PF(prev_ftr)); SW(chunk_ptr - prev_chunk_sz, new_hdr); SW(FPTR(chunk_ptr, sz + next_chunk_sz), new_hdr); chunk_ptr -= prev_chunk_sz; } // case 4: prev and next are not free return chunk_ptr; }