#include #include #include #include "asm/x86.h" #include "asm/soc/ioapic.h" #include "asm/soc/apic.h" /* total: 256 ivs 0~31: reserved for sys use (x32) 32~47: reserved for os use (x16) 48~ : free to allocate for external hardware use. (x208) */ static char iv_bmp[(IV_EX_END - IV_BASE_END) / 8]; static isr_cb handlers[TOTAL_IV]; static ptr_t ivhand_payload[TOTAL_IV]; static struct x86_intc arch_intc_ctx; extern void intr_routine_fallback(const struct hart_state* state); void isrm_init() { for (size_t i = 0; i < TOTAL_IV; i++) { handlers[i] = intr_routine_fallback; } } static inline int __ivalloc_within(size_t a, size_t b, isr_cb handler) { a = (a - IV_BASE_END); b = (b - IV_BASE_END); u8_t j = a % 8; u8_t k = 0; for (size_t i = a / 8; i < b / 8; i++, k += 8) { u8_t chunk = iv_bmp[i]; if (chunk == 0xff) continue; chunk >>= j; while ((chunk & 0x1) && k <= b) { chunk >>= 1; j++; k++; } if (j == 8) { j = 0; continue; } if (k > b) { break; } iv_bmp[i] |= 1 << j; int iv = IV_BASE_END + i * 8 + j; handlers[iv] = handler ? handler : intr_routine_fallback; return iv; } return 0; } int isrm_ivosalloc(isr_cb handler) { return __ivalloc_within(IV_BASE_END, IV_EX_BEGIN, handler); } int isrm_ivexalloc(isr_cb handler) { return __ivalloc_within(IV_EX_BEGIN, IV_EX_END, handler); } void isrm_ivfree(int iv) { assert(iv < 256); if (iv >= IV_BASE_END) { iv_bmp[(iv - IV_BASE_END) / 8] &= ~(1 << ((iv - IV_BASE_END) % 8)); } handlers[iv] = intr_routine_fallback; } int isrm_bindirq(int irq, isr_cb irq_handler) { int iv; if (!(iv = isrm_ivexalloc(irq_handler))) { fail("out of IV resource."); return 0; // never reach } // fixed, edge trigged, polarity=high isrm_irq_attach(irq, iv, 0, IRQ_DEFAULT); return iv; } void isrm_bindiv(int iv, isr_cb handler) { assert(iv < 256); if (iv >= IV_BASE_END) { iv_bmp[(iv - IV_BASE_END) / 8] |= 1 << ((iv - IV_BASE_END) % 8); } handlers[iv] = handler; } isr_cb isrm_get(int iv) { assert(iv < 256); return handlers[iv]; } ptr_t isrm_get_payload(const struct hart_state* state) { int iv = state->execp->vector; assert(iv < 256); return ivhand_payload[iv]; } void isrm_set_payload(int iv, ptr_t payload) { assert(iv < 256); ivhand_payload[iv] = payload; } void isrm_irq_attach(int irq, int iv, cpu_t dest, u32_t flags) { arch_intc_ctx.irq_attach(&arch_intc_ctx, irq, iv, dest, flags); } void isrm_notify_eoi(cpu_t id, int iv) { arch_intc_ctx.notify_eoi(&arch_intc_ctx, id, iv); } void isrm_notify_eos(cpu_t id) { isrm_notify_eoi(id, LUNAIX_SCHED); } msienv_t isrm_msi_start(struct device* dev) { /* * In x86, the MSI topology is rather simple, as the only * source is the PCI itself, and the write destination is * explictly defined in specification, so we don't need the * msienv to hold dynamically probed address */ return NULL; } int isrm_msi_avaliable(msienv_t msienv) { return 1; } msi_vector_t isrm_msi_alloc(msienv_t msienv, cpu_t cpu, int index, isr_cb handler) { unsigned int iv = isrm_ivexalloc(handler); // we ignore the cpu redirection for now. return (msi_vector_t){ .msi_addr = __APIC_BASE_PADDR, .msi_data = iv, .mapped_iv = iv }; } void isrm_msi_set_sideband(msienv_t msienv, ptr_t sideband) { return; } void isrm_msi_done(msienv_t msienv) { return; } int isrm_bind_dtn(struct dtn_intr* node) { fail("not supported"); } static int __intc_create(struct device_def* devdef, morph_t* obj) { apic_init(); ioapic_init(); arch_intc_ctx.name = "i386_apic"; arch_intc_ctx.irq_attach = ioapic_irq_remap; arch_intc_ctx.notify_eoi = apic_on_eoi; return 0; } static struct device_def i386_intc = { def_device_class(INTEL, CFG, INTC), def_device_name("i386 apic"), def_on_create(__intc_create) }; EXPORT_DEVICE(i386_intc, &i386_intc, load_sysconf);