#include #include #include #include #include #include #include #include #include #include #include #include #define MAX_PROCESS 512 volatile struct proc_info* __current; struct proc_info dummy; extern void __proc_table; struct scheduler sched_ctx; LOG_MODULE("SCHED") void sched_init() { size_t pg_size = ROUNDUP(sizeof(struct proc_info) * MAX_PROCESS, 0x1000); assert_msg(vmm_alloc_pages( KERNEL_PID, &__proc_table, pg_size, PG_PREM_RW, PP_FGPERSIST), "Fail to allocate proc table"); sched_ctx = (struct scheduler){ ._procs = (struct proc_info*)&__proc_table, .ptable_len = 0, .procs_index = 0 }; } void run(struct proc_info* proc) { if (!(__current->state & ~PROC_RUNNING)) { __current->state = PROC_STOPPED; } proc->state = PROC_RUNNING; // FIXME: 这里还是得再考虑一下。 // tss_update_esp(__current->intr_ctx.esp); if (__current->page_table != proc->page_table) { __current = proc; cpu_lcr3(__current->page_table); // from now on, the we are in the kstack of another process } else { __current = proc; } apic_done_servicing(); asm volatile("pushl %0\n" "jmp soft_iret\n" ::"r"(&__current->intr_ctx) : "memory"); } void schedule() { if (!sched_ctx.ptable_len) { return; } struct proc_info* next; int prev_ptr = sched_ctx.procs_index; int ptr = prev_ptr; // round-robin scheduler do { ptr = (ptr + 1) % sched_ctx.ptable_len; next = &sched_ctx._procs[ptr]; } while (next->state != PROC_STOPPED && ptr != prev_ptr); sched_ctx.procs_index = ptr; // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序…… cpu_disable_interrupt(); run(next); } static void proc_timer_callback(struct proc_info* proc) { proc->timer = NULL; proc->state = PROC_STOPPED; } __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds) { // FIXME: sleep的实现或许需要改一下。专门绑一个计时器好像没有必要…… if (!seconds) { return 0; } if (__current->timer) { return __current->timer->counter / timer_context()->running_frequency; } struct lx_timer* timer = timer_run_second(seconds, proc_timer_callback, __current, 0); __current->timer = timer; __current->intr_ctx.registers.eax = seconds; __current->state = PROC_BLOCKED; schedule(); } __DEFINE_LXSYSCALL1(void, exit, int, status) { terminate_proc(status); } __DEFINE_LXSYSCALL(void, yield) { sched_yield(); } pid_t _wait(pid_t wpid, int* status, int options); __DEFINE_LXSYSCALL1(pid_t, wait, int*, status) { return _wait(-1, status, 0); } __DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options) { return _wait(pid, status, options); } pid_t _wait(pid_t wpid, int* status, int options) { pid_t cur = __current->pid; int status_flags = 0; struct proc_info *proc, *n; if (llist_empty(&__current->children)) { return -1; } repeat: llist_for_each(proc, n, &__current->children, siblings) { if (!~wpid || proc->pid == wpid) { if (proc->state == PROC_TERMNAT && !options) { status_flags |= PROCTERM; goto done; } if (proc->state == PROC_STOPPED && (options & WUNTRACED)) { status_flags |= PROCSTOP; goto done; } } } if ((options & WNOHANG)) { return 0; } // 放弃当前的运行机会 sched_yield(); goto repeat; done: *status = (proc->exit_code & 0xffff) | status_flags; return destroy_process(proc->pid); } pid_t alloc_pid() { pid_t i = 0; for (; i < sched_ctx.ptable_len && sched_ctx._procs[i].state != PROC_DESTROY; i++) ; if (i == MAX_PROCESS) { panick("Panic in Ponyville shimmer!"); } return i; } void push_process(struct proc_info* process) { int index = process->pid; if (index < 0 || index > sched_ctx.ptable_len) { __current->k_status = LXINVLDPID; return; } if (index == sched_ctx.ptable_len) { sched_ctx.ptable_len++; } sched_ctx._procs[index] = *process; process = &sched_ctx._procs[index]; // make sure the address is in the range of process table llist_init_head(&process->children); // every process is the child of first process (pid=1) if (process->parent) { llist_append(&process->parent->children, &process->siblings); } else { process->parent = &sched_ctx._procs[0]; } process->state = PROC_STOPPED; } // from extern void __del_pagetable(pid_t pid, uintptr_t mount_point); pid_t destroy_process(pid_t pid) { int index = pid; if (index <= 0 || index > sched_ctx.ptable_len) { __current->k_status = LXINVLDPID; return; } struct proc_info* proc = &sched_ctx._procs[index]; proc->state = PROC_DESTROY; llist_delete(&proc->siblings); if (proc->mm.regions) { struct mm_region *pos, *n; llist_for_each(pos, n, &proc->mm.regions->head, head) { lxfree(pos); } } vmm_mount_pd(PD_MOUNT_2, proc->page_table); __del_pagetable(pid, PD_MOUNT_2); vmm_unmount_pd(PD_MOUNT_2); return pid; } void terminate_proc(int exit_code) { __current->state = PROC_TERMNAT; __current->exit_code = exit_code; schedule(); } struct proc_info* get_process(pid_t pid) { int index = pid; if (index < 0 || index > sched_ctx.ptable_len) { return NULL; } return &sched_ctx._procs[index]; } int orphaned_proc(pid_t pid) { if (!pid) return 0; if (pid >= sched_ctx.ptable_len) return 0; struct proc_info* proc = &sched_ctx._procs[pid]; struct proc_info* parent = proc->parent; // 如果其父进程的状态是terminated 或 destroy中的一种 // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程 return (parent->state & PROC_TERMMASK) || parent->created > proc->created; }