#include #include #include #include #include #include #include void vmm_init() { // TODO: something here? } ptd_t* vmm_init_pd() { ptd_t* dir = pmm_alloc_page(); for (size_t i = 0; i < PG_MAX_ENTRIES; i++) { dir[i] = 0; } // 递归映射,方便我们在软件层面进行查表地址转换 dir[PG_MAX_ENTRIES - 1] = NEW_L1_ENTRY(T_SELF_REF_PERM, dir); return dir; } int __vmm_map_internal(uint32_t l1_inx, uint32_t l2_inx, uintptr_t pa, pt_attr attr, int forced) { ptd_t* l1pt = (ptd_t*)L1_BASE_VADDR; pt_t* l2pt = (pt_t*)L2_VADDR(l1_inx); // See if attr make sense assert(attr <= 128); if(!l1pt[l1_inx]) { uint8_t* new_l1pt_pa = pmm_alloc_page(); // 物理内存已满! if (!new_l1pt_pa) { return 0; } l1pt[l1_inx] = NEW_L1_ENTRY(attr, new_l1pt_pa); memset((void*)L2_VADDR(l1_inx), 0, PG_SIZE); } if (!forced && l2pt[l2_inx]) { return 0; } l2pt[l2_inx] = NEW_L2_ENTRY(attr, pa); return 1; } void* vmm_map_page(void* va, void* pa, pt_attr tattr) { // 显然,对空指针进行映射没有意义。 if (!pa || !va) { return NULL; } assert(((uintptr_t)va & 0xFFFU) == 0) assert(((uintptr_t)pa & 0xFFFU) == 0) uint32_t l1_index = L1_INDEX(va); uint32_t l2_index = L2_INDEX(va); ptd_t* l1pt = (ptd_t*)L1_BASE_VADDR; // 在页表与页目录中找到一个可用的空位进行映射(位于va或其附近) ptd_t l1pte = l1pt[l1_index]; pt_t* l2pt = (pt_t*)L2_VADDR(l1_index); while (l1pte && l1_index < PG_MAX_ENTRIES) { if (l2_index == PG_MAX_ENTRIES) { l1_index++; l2_index = 0; l1pte = l1pt[l1_index]; l2pt = (pt_t*)L2_VADDR(l1_index); } // 页表有空位,只需要开辟一个新的 PTE (Level 2) if (l2pt && !l2pt[l2_index]) { l2pt[l2_index] = NEW_L2_ENTRY(tattr, pa); return (void*)V_ADDR(l1_index, l2_index, PG_OFFSET(va)); } l2_index++; } // 页目录与所有页表已满! if (l1_index > PG_MAX_ENTRIES) { return NULL; } if (!__vmm_map_internal(l1_index, l2_index, pa, tattr, false)) { return NULL; } return (void*)V_ADDR(l1_index, l2_index, PG_OFFSET(va)); } void* vmm_fmap_page(void* va, void* pa, pt_attr tattr) { if (!pa || !va) { return NULL; } assert(((uintptr_t)va & 0xFFFU) == 0) assert(((uintptr_t)pa & 0xFFFU) == 0) uint32_t l1_index = L1_INDEX(va); uint32_t l2_index = L2_INDEX(va); if (!__vmm_map_internal(l1_index, l2_index, pa, tattr, true)) { return NULL; } cpu_invplg(va); return (void*)V_ADDR(l1_index, l2_index, PG_OFFSET(va)); } void* vmm_alloc_page(void* vpn, pt_attr tattr) { void* pp = pmm_alloc_page(); void* result = vmm_map_page(vpn, pp, tattr); if (!result) { pmm_free_page(pp); } return result; } int vmm_alloc_pages(void* va, size_t sz, pt_attr tattr) { assert((uintptr_t)va % PG_SIZE == 0) assert(sz % PG_SIZE == 0) void* va_ = va; for (size_t i = 0; i < (sz >> PG_SIZE_BITS); i++, va_ += PG_SIZE) { void* pp = pmm_alloc_page(); uint32_t l1_index = L1_INDEX(va_); uint32_t l2_index = L2_INDEX(va_); if (!pp || !__vmm_map_internal(l1_index, l2_index, pp, tattr, false)) { // if one failed, release previous allocated pages. va_ = va; for (size_t j = 0; j < i; j++, va_ += PG_SIZE) { vmm_unmap_page(va_); } return false; } } return true; } void vmm_unmap_page(void* va) { assert(((uintptr_t)va & 0xFFFU) == 0) uint32_t l1_index = L1_INDEX(va); uint32_t l2_index = L2_INDEX(va); ptd_t* l1pt = (ptd_t*)L1_BASE_VADDR; ptd_t l1pte = l1pt[l1_index]; if (l1pte) { pt_t* l2pt = (pt_t*)L2_VADDR(l1_index); uint32_t l2pte = l2pt[l2_index]; if (IS_CACHED(l2pte)) { pmm_free_page((void*)l2pte); } cpu_invplg(va); l2pt[l2_index] = 0; } } v_mapping vmm_lookup(void* va) { assert(((uintptr_t)va & 0xFFFU) == 0) uint32_t l1_index = L1_INDEX(va); uint32_t l2_index = L2_INDEX(va); uint32_t po = PG_OFFSET(va); ptd_t* l1pt = (ptd_t*)L1_BASE_VADDR; ptd_t l1pte = l1pt[l1_index]; v_mapping mapping = { .flags = 0, .pa = 0, .pn = 0 }; if (l1pte) { pt_t l2pte = ((pt_t*)L2_VADDR(l1_index))[l2_index]; if (l2pte) { uintptr_t ppn = l2pte >> PG_SIZE_BITS; mapping.flags = PG_ENTRY_FLAGS(l2pte); mapping.pa = PG_ENTRY_ADDR(l2pte); mapping.pn = mapping.pa >> PG_SIZE_BITS; } } return mapping; } void* vmm_v2p(void* va) { return vmm_lookup(va).pa; }