#include #include #include #include #include #include #include #include #include #define PS2_DEV_CMD_MAX_ATTEMPTS 5 LOG_MODULE("PS2KBD"); static struct ps2_cmd_queue cmd_q; static struct ps2_key_buffer key_buf; static struct ps2_kbd_state kbd_state; #define KEY_NUM(x) (x + 0x30) #define KEY_NPAD(x) ON_KEYPAD(KEY_NUM(x)) // 我们使用 Scancode Set 2 // 大部分的扫描码(键码) static kbd_keycode_t scancode_set2[] = { 0, KEY_F9, 0, KEY_F5, KEY_F3, KEY_F1, KEY_F2, KEY_F12, 0, KEY_F10, KEY_F8, KEY_F6, KEY_F4, KEY_HTAB, '`', 0, 0, KEY_LALT, KEY_LSHIFT, 0, KEY_LCTRL, 'q', KEY_NUM(1), 0, 0, 0, 'z', 's', 'a', 'w', KEY_NUM(2), 0, 0, 'c', 'x', 'd', 'e', KEY_NUM(4), KEY_NUM(3), 0, 0, KEY_SPACE, 'v', 'f', 't', 'r', KEY_NUM(5), 0, 0, 'n', 'b', 'h', 'g', 'y', KEY_NUM(6), 0, 0, 0, 'm', 'j', 'u', KEY_NUM(7), KEY_NUM(8), 0, 0, ',', 'k', 'i', 'o', KEY_NUM(0), KEY_NUM(9), 0, 0, '.', '/', 'l', ';', 'p', '-', 0, 0, 0, '\'', 0, '[', '=', 0, 0, KEY_CAPSLK, KEY_RSHIFT, KEY_LF, ']', 0, '\\', 0, 0, 0, 0, 0, 0, 0, 0, KEY_BS, 0, 0, KEY_NPAD(1), 0, KEY_NPAD(4), KEY_NPAD(7), 0, 0, 0, KEY_NPAD(0), ON_KEYPAD('.'), KEY_NPAD(2), KEY_NPAD(5), KEY_NPAD(6), KEY_NPAD(8), KEY_ESC, KEY_NUMSLK, KEY_F11, ON_KEYPAD('+'), KEY_NPAD(3), ON_KEYPAD('-'), ON_KEYPAD('*'), KEY_NPAD(9), KEY_SCRLLK, 0, 0, 0, 0, KEY_F7 }; // 一些特殊的键码(以 0xe0 位前缀的) static kbd_keycode_t scancode_set2_ex[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KEY_RALT, 0, 0, KEY_RCTRL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ON_KEYPAD('/'), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ON_KEYPAD(KEY_LF), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KEY_END, 0, KEY_LEFT, KEY_HOME, 0, 0, 0, KEY_INSERT, KEY_DELETE, KEY_DOWN, 0, KEY_RIGHT, KEY_UP, 0, 0, 0, 0, KEY_PG_DOWN, 0, 0, KEY_PG_UP }; // 用于处理 Shift+ 的情况 static kbd_keycode_t scancode_set2_shift[] = { 0, KEY_F9, 0, KEY_F5, KEY_F3, KEY_F1, KEY_F2, KEY_F12, 0, KEY_F10, KEY_F8, KEY_F6, KEY_F4, KEY_HTAB, '~', 0, 0, KEY_LALT, KEY_LSHIFT, 0, KEY_LCTRL, 'Q', '!', 0, 0, 0, 'Z', 'S', 'A', 'W', '@', 0, 0, 'C', 'X', 'D', 'E', '$', '#', 0, 0, KEY_SPACE, 'V', 'F', 'T', 'R', '%', 0, 0, 'N', 'B', 'H', 'G', 'Y', '^', 0, 0, 0, 'M', 'J', 'U', '&', '*', 0, 0, '<', 'K', 'I', 'O', ')', '(', 0, 0, '>', '?', 'L', ':', 'P', '_', 0, 0, 0, '"', 0, '{', '+', 0, 0, KEY_CAPSLK, KEY_RSHIFT, KEY_LF, '}', 0, '|', 0, 0, 0, 0, 0, 0, 0, 0, KEY_BS, 0, 0, KEY_NPAD(1), 0, KEY_NPAD(4), KEY_NPAD(7), 0, 0, 0, KEY_NPAD(0), ON_KEYPAD('.'), KEY_NPAD(2), KEY_NPAD(5), KEY_NPAD(6), KEY_NPAD(8), KEY_ESC, KEY_NUMSLK, KEY_F11, ON_KEYPAD('+'), KEY_NPAD(3), ON_KEYPAD('-'), ON_KEYPAD('*'), KEY_SCRLLK, 0, 0, 0, 0, KEY_F7 }; #define KBD_STATE_KWAIT 0x00 #define KBD_STATE_KSPECIAL 0x01 #define KBD_STATE_KRELEASED 0x02 #define KBD_STATE_CMDPROCS 0x40 void intr_ps2_kbd_handler(const isr_param* param); static struct kdb_keyinfo_pkt* ps2_keybuffer_next_write(); // TODO: Abstract the bounded buffer out. void ps2_device_post_cmd(char cmd, char arg) { mutex_lock(&cmd_q.mutex); int index = (cmd_q.queue_ptr + cmd_q.queue_len) % PS2_CMD_QUEUE_SIZE; if (index == cmd_q.queue_ptr && cmd_q.queue_len) { // 队列已满! mutex_unlock(&cmd_q.mutex); return; } struct ps2_cmd *container = &cmd_q.cmd_queue[index]; container->cmd = cmd; container->arg = arg; cmd_q.queue_len++; // 释放锁,同理。 mutex_unlock(&cmd_q.mutex); } void ps2_kbd_init() { memset(&cmd_q, 0, sizeof(cmd_q)); memset(&key_buf, 0, sizeof(key_buf)); memset(&kbd_state, 0, sizeof(kbd_state)); mutex_init(&cmd_q.mutex); mutex_init(&key_buf.mutex); kbd_state.translation_table = scancode_set2; kbd_state.state = KBD_STATE_KWAIT; cpu_disable_interrupt(); // XXX: 是否需要使用FADT探测PS/2控制器的存在? // 1、禁用任何的PS/2设备 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_PORT1_DISABLE, PS2_NO_ARG); ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_PORT2_DISABLE, PS2_NO_ARG); // 2、清空控制器缓冲区 io_inb(PS2_PORT_ENC_DATA); char result; // 3、屏蔽所有PS/2设备(端口1&2)IRQ,并且禁用键盘键码转换功能 result = ps2_issue_cmd(PS2_CMD_READ_CFG, PS2_NO_ARG); result = result & ~(PS2_CFG_P1INT | PS2_CFG_P2INT | PS2_CFG_TRANSLATION); ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_WRITE_CFG, result); // 4、控制器自检 result = ps2_issue_cmd(PS2_CMD_SELFTEST, PS2_NO_ARG); if (result != PS2_RESULT_TEST_OK) { kprintf(KERROR "Controller self-test failed."); goto done; } // 5、设备自检(端口1自检,通常是我们的键盘) result = ps2_issue_cmd(PS2_CMD_SELFTEST_PORT1, PS2_NO_ARG); if (result != 0) { kprintf(KERROR "Interface test on port 1 failed."); goto done; } // 6、开启位于端口1的 IRQ,并启用端口1。不用理会端口2,那儿一般是鼠标。 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_PORT1_ENABLE, PS2_NO_ARG); result = ps2_issue_cmd(PS2_CMD_READ_CFG, PS2_NO_ARG); result = result | PS2_CFG_P1INT; ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_WRITE_CFG, result); // 至此,PS/2控制器和设备已完成初始化,可以正常使用。 // 将我们的键盘驱动挂载到第204号中断上(已由IOAPIC映射至IRQ#1), intr_subscribe(PC_KBD_IV, intr_ps2_kbd_handler); // 搞一个计时器,将我们的 ps2_process_cmd 挂上去。每隔5毫秒执行排在队头的命令。 // 为什么只执行队头的命令,而不是全部的命令? // 因为我们需要保证isr尽量的简短,运行起来快速。而发送这些命令非常的耗时。 timer_run_ms(5, ps2_process_cmd, NULL, TIMER_MODE_PERIODIC); done: cpu_enable_interrupt(); } void ps2_process_cmd(void* arg) { // 检查锁是否已被启用,如果启用,则表明该timer中断发生时,某个指令正在入队。 // 如果是这种情况则跳过,留到下一轮再尝试处理。 // 注意,这里其实是ISR的一部分(timer中断),对于单核CPU来说,ISR等同于单个的原子操作。 // (因为EFLAGS.IF=0,所有可屏蔽中断被屏蔽。对于NMI的情况,那么就直接算是triple fault了,所以也没有讨论的意义) // 所以,假若我们遵从互斥锁的严格定义(即这里需要阻塞),那么中断将会被阻塞,进而造成死锁。 // 因此,我们这里仅仅进行判断。 // 会不会产生指令堆积?不会,因为指令发送的频率远远低于指令队列清空的频率。在目前,我们发送的唯一指令 // 就只是用来开关键盘上的LED灯(如CAPSLOCK)。 if (mutex_on_hold(&cmd_q.mutex) || !cmd_q.queue_len) { return; } // 处理队列排头的指令 struct ps2_cmd *pending_cmd = &cmd_q.cmd_queue[cmd_q.queue_ptr]; char result; int attempts = 0; // 尝试将命令发送至PS/2键盘(通过PS/2控制器) // 如果不成功(0x60 IO口返回 0xfe,即 NAK 或 Resend) // 则尝试最多五次 do { result = ps2_issue_dev_cmd(pending_cmd->cmd, pending_cmd->arg); kbd_state.state += KBD_STATE_CMDPROCS; attempts++; } while(result == PS2_RESULT_NAK && attempts < PS2_DEV_CMD_MAX_ATTEMPTS); // XXX: 是否需要处理不成功的指令? cmd_q.queue_ptr = (cmd_q.queue_ptr + 1) % PS2_CMD_QUEUE_SIZE; cmd_q.queue_len--; } void kbd_buffer_key_event(kbd_keycode_t key, uint8_t scancode, kbd_kstate_t state) { // forgive me on these ugly bit-level tricks, // I really hate doing branching on these "fliping switch" things if (key == KEY_CAPSLK) { kbd_state.key_state ^= KBD_KEY_FCAPSLKED & -state; } else if (key == KEY_NUMSLK) { kbd_state.key_state ^= KBD_KEY_FNUMBLKED & -state; } else if (key == KEY_SCRLLK) { kbd_state.key_state ^= KBD_KEY_FSCRLLKED & -state; } else { if ((key & MODIFR)) { kbd_kstate_t tmp = (KBD_KEY_FLSHIFT_HELD << (key & 0x00ff)); kbd_state.key_state = (kbd_state.key_state & ~tmp) | (tmp & -state); } else if (!(key & 0xff00) && (kbd_state.key_state & (KBD_KEY_FLSHIFT_HELD | KBD_KEY_FRSHIFT_HELD))) { key = scancode_set2_shift[scancode]; } state = state | kbd_state.key_state; key = key & (0xffdf | -('a' > key || key > 'z' || !(state & KBD_KEY_FCAPSLKED))); if (!mutex_on_hold(&key_buf.mutex)) { struct kdb_keyinfo_pkt* keyevent_pkt = ps2_keybuffer_next_write(); *keyevent_pkt = (struct kdb_keyinfo_pkt) { .keycode = key, .scancode = scancode, .state = state, .timestamp = clock_systime() }; } // kprintf(KDEBUG "%c (t=%d, s=%x, c=%d)\n", key & 0x00ff, timestamp, state, key >> 8); return; // do not delete this return } // Ooops, this guy generates irq! ps2_device_post_cmd(PS2_KBD_CMD_SETLED, (kbd_state.key_state >> 1) & 0x00ff); } void intr_ps2_kbd_handler(const isr_param* param) { // Do not move this line. It is in the right place and right order. // This is to ensure we've cleared the output buffer everytime, so it won't pile up across irqs. uint8_t scancode = io_inb(PS2_PORT_ENC_DATA); kbd_keycode_t key; /* * 判断键盘是否处在指令发送状态,防止误触发。(伪输入中断) * 这是因为我们需要向ps/2设备发送指令(比如控制led灯),而指令会有返回码。 * 这就会有可能导致ps/2控制器在受到我们的命令后(在ps2_process_cmd中), * 产生IRQ#1中断(虽然说这种情况取决于底层BIOS实现,但还是会发生,比如QEMU和bochs)。 * 所以这就是说,当IRQ#1中断产生时,我们的CPU正处在另一个ISR中。这样就会导致所有的外部中断被缓存在APIC内部的 * FIFO队列里,进行排队等待(APIC长度为二的队列 {IRR, TMR};参考 Intel Manual Vol.3A 10.8.4) * 那么当ps2_process_cmd执行完后(内嵌在#APIC_TIMER_IV),CPU返回EOI给APIC,APIC紧接着将排在队里的IRQ#1发送给CPU * 造成误触发。也就是说,我们此时读入的scancode实则上是上一个指令的返回代码。 * * Problem 1 (Fixed): * 但是这种方法有个问题,那就是,假若我们的某一个命令失败了一次,ps/2给出0xfe,我们重传,ps/2收到指令并给出0xfa。 * 那么这样一来,将会由两个连续的IRQ#1产生。而APIC是最多可以缓存两个IRQ,于是我们就会漏掉一个IRQ,依然会误触发。 * Solution: * 累加掩码 ;) */ if ((kbd_state.state & 0xc0)) { kbd_state.state -= KBD_STATE_CMDPROCS; return; } //kprintf(KINFO "%x\n", scancode & 0xff); switch (kbd_state.state) { case KBD_STATE_KWAIT: if (scancode == 0xf0) { // release code kbd_state.state = KBD_STATE_KRELEASED; } else if (scancode == 0xe0) { kbd_state.state = KBD_STATE_KSPECIAL; kbd_state.translation_table = scancode_set2_ex; } else { key = kbd_state.translation_table[scancode]; kbd_buffer_key_event(key, scancode, KBD_KEY_FPRESSED); } break; case KBD_STATE_KSPECIAL: if (scancode == 0xf0) { //release code kbd_state.state = KBD_STATE_KRELEASED; } else { key = kbd_state.translation_table[scancode]; kbd_buffer_key_event(key, scancode, KBD_KEY_FPRESSED); kbd_state.state = KBD_STATE_KWAIT; kbd_state.translation_table = scancode_set2; } break; case KBD_STATE_KRELEASED: key = kbd_state.translation_table[scancode]; kbd_buffer_key_event(key, scancode, KBD_KEY_FRELEASED); // reset the translation table to scancode_set2 kbd_state.state = KBD_STATE_KWAIT; kbd_state.translation_table = scancode_set2; break; default: break; } } static uint8_t ps2_issue_cmd(char cmd, uint16_t arg) { ps2_post_cmd(PS2_PORT_CTRL_CMDREG, cmd, arg); char result; // 等待PS/2控制器返回。通过轮询(polling)状态寄存器的 bit 0 // 如置位,则表明返回代码此时就在 0x60 IO口上等待读取。 while(!((result = io_inb(PS2_PORT_CTRL_STATUS)) & PS2_STATUS_OFULL)); return io_inb(PS2_PORT_ENC_CMDREG); } static uint8_t ps2_issue_dev_cmd(char cmd, uint16_t arg) { ps2_post_cmd(PS2_PORT_ENC_CMDREG, cmd, arg); char result; // 等待PS/2控制器返回。通过轮询(polling)状态寄存器的 bit 0 // 如置位,则表明返回代码此时就在 0x60 IO口上等待读取。 while(!((result = io_inb(PS2_PORT_CTRL_STATUS)) & PS2_STATUS_OFULL)); return io_inb(PS2_PORT_ENC_CMDREG); } static void ps2_post_cmd(uint8_t port, char cmd, uint16_t arg) { char result; // 等待PS/2输入缓冲区清空,这样我们才可以写入命令 while((result = io_inb(PS2_PORT_CTRL_STATUS)) & PS2_STATUS_IFULL); io_outb(port, cmd); if (!(arg & PS2_NO_ARG)) { // 所有参数一律通过0x60传入。 io_outb(PS2_PORT_ENC_CMDREG, (uint8_t)(arg & 0x00ff)); } } int kbd_recv_key(struct kdb_keyinfo_pkt* key_event) { if (!key_buf.buffered_len) { return 0; } mutex_lock(&key_buf.mutex); struct kdb_keyinfo_pkt* pkt_current = &key_buf.buffer[key_buf.read_ptr]; *key_event = *pkt_current; key_buf.buffered_len--; key_buf.read_ptr = (key_buf.read_ptr + 1) % PS2_KBD_RECV_BUFFER_SIZE; mutex_unlock(&key_buf.mutex); return 1; } static struct kdb_keyinfo_pkt* ps2_keybuffer_next_write() { int index = (key_buf.read_ptr + key_buf.buffered_len) % PS2_KBD_RECV_BUFFER_SIZE; if (index == key_buf.read_ptr && key_buf.buffered_len) { // the reader is lagged so much such that the buffer is full. // It is suggested to read from beginning for nearly up-to-date readings. key_buf.read_ptr = 0; key_buf.buffered_len = index; } else { key_buf.buffered_len++; } return &key_buf.buffer[index]; }