/** * @file pci.c * @author Lunaixsky (zelong56@gmail.com) * @brief A software implementation of PCI Local Bus Specification Revision 3.0 * @version 0.1 * @date 2022-06-28 * * @copyright Copyright (c) 2022 * */ #include #include #include #include #include #include LOG_MODULE("PCI") static struct llist_header pci_devices; void pci_probe_msi_info(struct pci_device* device); void pci_probe_device(int bus, int dev, int funct) { uint32_t base = PCI_ADDRESS(bus, dev, funct); pci_reg_t reg1 = pci_read_cspace(base, 0); // Vendor=0xffff则表示设备不存在 if (PCI_DEV_VENDOR(reg1) == PCI_VENDOR_INVLD) { return; } pci_reg_t hdr_type = pci_read_cspace(base, 0xc); hdr_type = (hdr_type >> 16) & 0xff; // 防止堆栈溢出 // QEMU的ICH9/Q35实现似乎有点问题,对于多功能设备的每一个功能的header type // 都将第七位置位。而virtualbox 就没有这个毛病。 if ((hdr_type & 0x80) && funct == 0) { hdr_type = hdr_type & ~0x80; // 探测多用途设备(multi-function device) for (int i = 1; i < 7; i++) { pci_probe_device(bus, dev, i); } } if (hdr_type != PCI_TDEV) { // XXX: 目前忽略所有桥接设备,比如PCI-PCI桥接器,或者是CardBus桥接器 return; } pci_reg_t intr = pci_read_cspace(base, 0x3c); pci_reg_t class = pci_read_cspace(base, 0x8); struct pci_device* device = lxmalloc(sizeof(struct pci_device)); *device = (struct pci_device){ .cspace_base = base, .class_info = class, .device_info = reg1, .intr_info = intr }; pci_probe_msi_info(device); llist_append(&pci_devices, &device->dev_chain); } void pci_probe() { // 暴力扫描所有PCI设备 // XXX: 尽管最多会有256条PCI总线,但就目前而言,只考虑bus #0就足够了 for (int bus = 0; bus < 1; bus++) { for (int dev = 0; dev < 32; dev++) { pci_probe_device(bus, dev, 0); } } } void pci_probe_msi_info(struct pci_device* device) { // Note that Virtualbox have to use ICH9 chipset for MSI support. // Qemu seems ok with default PIIX3, Bochs is pending to test... // See https://www.virtualbox.org/manual/ch03.html (section 3.5.1) pci_reg_t status = pci_read_cspace(device->cspace_base, PCI_REG_STATUS_CMD) >> 16; if (!(status & 0x10)) { device->msi_loc = 0; return; } pci_reg_t cap_ptr = pci_read_cspace(device->cspace_base, 0x34) & 0xff; uint32_t cap_hdr; while (cap_ptr) { cap_hdr = pci_read_cspace(device->cspace_base, cap_ptr); if ((cap_hdr & 0xff) == 0x5) { // MSI device->msi_loc = cap_ptr; return; } cap_ptr = (cap_hdr >> 8) & 0xff; } } #define PCI_PRINT_BAR_LISTING void pci_print_device() { struct pci_device *pos, *n; llist_for_each(pos, n, &pci_devices, dev_chain) { kprintf(KINFO "(B%xh:D%xh:F%xh) Dev %x:%x, Class 0x%x\n", PCI_BUS_NUM(pos->cspace_base), PCI_SLOT_NUM(pos->cspace_base), PCI_FUNCT_NUM(pos->cspace_base), PCI_DEV_VENDOR(pos->device_info), PCI_DEV_DEVID(pos->device_info), PCI_DEV_CLASS(pos->class_info)); kprintf(KINFO "\t IRQ: %d, INT#x: %d\n", PCI_INTR_IRQ(pos->intr_info), PCI_INTR_PIN(pos->intr_info)); #ifdef PCI_PRINT_BAR_LISTING pci_reg_t bar; for (size_t i = 1; i <= 6; i++) { size_t size = pci_bar_sizing(pos, &bar, i); if (!bar) continue; if (PCI_BAR_MMIO(bar)) { kprintf(KINFO "\t BAR#%d (MMIO) %p [%d]\n", i, PCI_BAR_ADDR_MM(bar), size); } else { kprintf(KINFO "\t BAR#%d (I/O) %p [%d]\n", i, PCI_BAR_ADDR_IO(bar), size); } } #endif if (pos->msi_loc) { kprintf(KINFO "\t MSI supported (@%xh)\n", pos->msi_loc); } } } size_t pci_bar_sizing(struct pci_device* dev, uint32_t* bar_out, uint32_t bar_num) { pci_reg_t bar = pci_read_cspace(dev->cspace_base, PCI_REG_BAR(bar_num)); if (!bar) { *bar_out = 0; return 0; } pci_write_cspace(dev->cspace_base, PCI_REG_BAR(bar_num), 0xffffffff); pci_reg_t sized = pci_read_cspace(dev->cspace_base, PCI_REG_BAR(bar_num)) & ~0x1; if (PCI_BAR_MMIO(bar)) { sized = PCI_BAR_ADDR_MM(sized); } *bar_out = bar; pci_write_cspace(dev->cspace_base, PCI_REG_BAR(bar_num), bar); return ~sized + 1; } void pci_setup_msi(struct pci_device* device, int vector) { // Dest: APIC#0, Physical Destination, No redirection uint32_t msi_addr = (__APIC_BASE_PADDR); // Edge trigger, Fixed delivery uint32_t msi_data = vector; pci_write_cspace( device->cspace_base, PCI_MSI_ADDR(device->msi_loc), msi_addr); pci_write_cspace( device->cspace_base, PCI_MSI_DATA(device->msi_loc), msi_data & 0xffff); pci_reg_t reg1 = pci_read_cspace(device->cspace_base, device->msi_loc); // manipulate the MSI_CTRL to allow device using MSI to request service. reg1 = (reg1 & 0xff8fffff) | 0x10000; pci_write_cspace(device->cspace_base, device->msi_loc, reg1); } struct pci_device* pci_get_device_by_id(uint16_t vendorId, uint16_t deviceId) { uint32_t dev_info = vendorId | (deviceId << 16); struct pci_device *pos, *n; llist_for_each(pos, n, &pci_devices, dev_chain) { if (pos->device_info == dev_info) { return pos; } } return NULL; } struct pci_device* pci_get_device_by_class(uint32_t class) { struct pci_device *pos, *n; llist_for_each(pos, n, &pci_devices, dev_chain) { if (PCI_DEV_CLASS(pos->class_info) == class) { return pos; } } return NULL; } void pci_init() { llist_init_head(&pci_devices); acpi_context* acpi = acpi_get_context(); assert_msg(acpi, "ACPI not initialized."); if (acpi->mcfg.alloc_num) { // PCIe Enhanced Configuration Mechanism is supported. // TODO: support PCIe addressing mechanism } // Otherwise, fallback to use legacy PCI 3.0 method. pci_probe(); }