#include #include extern unsigned int __kexec_end[]; void pmm_arch_init_pool(struct pmem* memory) { pmm_declare_pool(POOL_UNIFIED, 1, memory->list_len); } ptr_t pmm_arch_init_remap(struct pmem* memory, struct boot_handoff* bctx) { size_t ppfn_total = pfn(bctx->mem.size) + 1; size_t pool_size = ppfn_total * sizeof(struct ppage); size_t i = 0; struct boot_mmapent* ent; for (; i < bctx->mem.mmap_len; i++) { ent = &bctx->mem.mmap[i]; if (free_memregion(ent) && ent->size > pool_size) { goto found; } } // fail to find a viable free region to host pplist return 0; found:; ptr_t kexec_end = to_kphysical(__kexec_end); ptr_t aligned_pplist = MAX(ent->start, kexec_end); // FIXME this is a temporary hack, we need a better way to convey // the mem-map for us to settle the pplist safely for (i = 0; i mods.mods_num; i++) { aligned_pplist = MAX(aligned_pplist, bctx->mods.entries[i].end); } aligned_pplist = napot_upaligned(aligned_pplist, L0T_SIZE); if (aligned_pplist + pool_size > ent->start + ent->size) { return 0; } // for x86_32, the upper bound of memory requirement for pplist // is sizeof(struct ppage) * 1MiB. For simplicity (as well as // efficiency), we limit the granule to 4M huge page, thus, // it will take away at least 4M worth of vm address resource // regardless the actual physical memory size // anchor the pplist at vmap location (right after kernel) memory->pplist = (struct ppage*)VMAP; memory->list_len = ppfn_total; pfn_t nhuge = page_count(pool_size, L0T_SIZE); pte_t* ptep = mkl0tep_va(VMS_SELF, VMAP); pte_t pte = mkpte(aligned_pplist, KERNEL_DATA); vmm_set_ptes_contig(ptep, pte_mkhuge(pte), L0T_SIZE, nhuge); tlb_flush_kernel(VMAP); // shift the actual vmap start address vmap_set_start(VMAP + nhuge * L0T_SIZE); return aligned_pplist; }