#include #include #include #include #define PT_ADDR(ptd, pt_index) ((ptd_t*)ptd + (pt_index + 1) * 1024) #define SET_PDE(ptd, pde_index, pde) *((ptd_t*)ptd + pde_index) = pde; #define SET_PTE(ptd, pt_index, pte_index, pte) \ *(PT_ADDR(ptd, pt_index) + pte_index) = pte; #define sym_val(sym) (ptr_t)(&sym) #define KERNEL_PAGE_COUNT \ ((sym_val(__kernel_end) - sym_val(__kernel_start) + 0x1000 - 1) >> 12); #define HHK_PAGE_COUNT ((sym_val(__init_hhk_end) - 0x100000 + 0x1000 - 1) >> 12) // use table #1 #define PG_TABLE_IDENTITY 0 // use table #2-8 // hence the max size of kernel is 8MiB #define PG_TABLE_KERNEL 1 // use table #9 #define PG_TABLE_STACK 8 // Provided by linker (see linker.ld) extern u8_t __kernel_start; extern u8_t __kernel_end; extern u8_t __init_hhk_end; extern u8_t _k_stack; void _init_page(ptd_t* ptd) { SET_PDE(ptd, 0, NEW_L1_ENTRY(PG_PREM_RW, ptd + PG_MAX_ENTRIES)) // 对低1MiB空间进行对等映射(Identity // mapping),也包括了我们的VGA,方便内核操作。 for (u32_t i = 0; i < 256; i++) { SET_PTE(ptd, PG_TABLE_IDENTITY, i, NEW_L2_ENTRY(PG_PREM_RW, (i << PG_SIZE_BITS))) } // 对等映射我们的hhk_init,这样一来,当分页与地址转换开启后,我们依然能够照常执行最终的 // jmp 指令来跳转至 // 内核的入口点 for (u32_t i = 0; i < HHK_PAGE_COUNT; i++) { SET_PTE(ptd, PG_TABLE_IDENTITY, 256 + i, NEW_L2_ENTRY(PG_PREM_RW, 0x100000 + (i << PG_SIZE_BITS))) } // --- 将内核重映射至高半区 --- // 这里是一些计算,主要是计算应当映射进的 页目录 与 页表 的条目索引(Entry // Index) u32_t kernel_pde_index = L1_INDEX(sym_val(__kernel_start)); u32_t kernel_pte_index = L2_INDEX(sym_val(__kernel_start)); u32_t kernel_pg_counts = KERNEL_PAGE_COUNT; // 将内核所需要的页表注册进页目录 // 当然,就现在而言,我们的内核只占用不到50个页(每个页表包含1024个页) // 这里分配了3个页表(12MiB),未雨绸缪。 for (u32_t i = 0; i < PG_TABLE_STACK - PG_TABLE_KERNEL; i++) { SET_PDE(ptd, kernel_pde_index + i, NEW_L1_ENTRY(PG_PREM_URW, PT_ADDR(ptd, PG_TABLE_KERNEL + i))) } // 首先,检查内核的大小是否可以fit进我们这几个表(12MiB) if (kernel_pg_counts > (PG_TABLE_STACK - PG_TABLE_KERNEL) * PG_MAX_ENTRIES) { // ERROR: require more pages // here should do something else other than head into blocking asm("ud2"); } // 计算内核.text段的物理地址 ptr_t kernel_pm = V2P(&__kernel_start); // 重映射内核至高半区地址(>=0xC0000000) for (u32_t i = 0; i < kernel_pg_counts; i++) { // FIXME: 只是用作用户模式(R3)测试! // 在实际中,内核代码除了极少部分需要暴露给R3(如从信号返回),其余的应为R0。 #warning "fixme: kernel pages should not be user-accessable" SET_PTE(ptd, PG_TABLE_KERNEL, kernel_pte_index + i, NEW_L2_ENTRY(PG_PREM_URW, kernel_pm + (i << PG_SIZE_BITS))) } // 最后一个entry用于循环映射 SET_PDE(ptd, PG_MAX_ENTRIES - 1, NEW_L1_ENTRY(T_SELF_REF_PERM, ptd)); } u32_t __save_subset(u8_t* destination, u8_t* base, unsigned int size) { unsigned int i = 0; for (; i < size; i++) { *(destination + i) = *(base + i); } return i; } void _save_multiboot_info(multiboot_info_t* info, u8_t* destination) { u32_t current = 0; u8_t* info_b = (u8_t*)info; for (; current < sizeof(multiboot_info_t); current++) { *(destination + current) = *(info_b + current); } ((multiboot_info_t*)destination)->mmap_addr = (ptr_t)destination + current; current += __save_subset( destination + current, (u8_t*)info->mmap_addr, info->mmap_length); if (present(info->flags, MULTIBOOT_INFO_DRIVE_INFO)) { ((multiboot_info_t*)destination)->drives_addr = (ptr_t)destination + current; current += __save_subset( destination + current, (u8_t*)info->drives_addr, info->drives_length); } } void _hhk_init(ptd_t* ptd, u32_t kpg_size) { // 初始化 kpg 全为0 // P.s. 真没想到GRUB会在这里留下一堆垃圾! 老子的页表全乱套了! u8_t* kpg = (u8_t*)ptd; for (u32_t i = 0; i < kpg_size; i++) { *(kpg + i) = 0; } _init_page(ptd); }