#include <lunaix/mm/kalloc.h>
#include <hal/cpu.h>
-#include <hal/ioapic.h>
#include <arch/x86/interrupts.h>
#include <stdint.h>
};
-#define KBD_STATE_WAIT_KEY 0
-#define KBD_STATE_SPECIAL 1
-#define KBD_STATE_RELEASED 2
+#define KBD_STATE_KWAIT 0x00
+#define KBD_STATE_KSPECIAL 0x01
+#define KBD_STATE_KRELEASED 0x02
+// #define KBD_STATE_CMDPROCS 0x80
void intr_ps2_kbd_handler(const isr_param* param);
+static struct kdb_keyinfo_pkt* ps2_keybuffer_next_write();
+// TODO: Abstract the bounded buffer out.
void ps2_device_post_cmd(char cmd, char arg) {
// 不需要任何的类似lock cmpxchgl的骚操作。
// 这条赋值表达式最多涉及一个内存引用(e.g., movl $1, (cmd_q.lock)),因此是原子的。
cmd_q.lock = 1;
int index = (cmd_q.queue_ptr + cmd_q.queue_len) % PS2_CMD_QUEUE_SIZE;
- int diff = index - cmd_q.queue_ptr;
- if (diff > 0 && diff != cmd_q.queue_len) {
+ if (index == cmd_q.queue_ptr && cmd_q.queue_len) {
// 队列已满!
+ cmd_q.lock = 0;
return;
}
memset(&key_buf, 0, sizeof(key_buf));
memset(&kbd_state, 0, sizeof(kbd_state));
kbd_state.translation_table = scancode_set2;
- kbd_state.state = KBD_STATE_WAIT_KEY;
+ kbd_state.state = KBD_STATE_KWAIT;
cpu_disable_interrupt();
if (!cmd_q.queue_len || cmd_q.lock) {
return;
}
-
+
+ // kbd_state.state |= KBD_STATE_CMDPROCS;
// 处理队列排头的指令
struct ps2_cmd *pending_cmd = &cmd_q.cmd_queue[cmd_q.queue_ptr];
char result;
cmd_q.queue_len--;
}
-static struct kdb_keyinfo_pkt* ps2_keybuffer_next_write() {
- int index = (key_buf.read_ptr + key_buf.buffered_len) % PS2_KBD_RECV_BUFFER_SIZE;
- if (index == key_buf.read_ptr && key_buf.buffered_len) {
- // the reader lagged so much. It is suggested to read from beginning.
- key_buf.read_ptr = 0;
- key_buf.buffered_len = index;
- }
- else {
- key_buf.buffered_len++;
- }
- return &key_buf.buffer[index];
-}
-
void kbd_buffer_key_event(kbd_keycode_t key, uint8_t scancode, kbd_kstate_t state) {
// forgive me on these ugly bit-level tricks,
// I really hate doing branching on these "fliping switch" things
}
state = state | kbd_state.key_state;
key = key & (0xffdf | -('a' > key || key > 'z' || !(state & KBD_KEY_FCAPSLKED)));
- time_t timestamp = clock_systime();
- // TODO: Construct the packet.
+
if (!key_buf.lock) {
struct kdb_keyinfo_pkt* keyevent_pkt = ps2_keybuffer_next_write();
- keyevent_pkt->keycode = key;
- keyevent_pkt->scancode = scancode;
- keyevent_pkt->state = state;
- keyevent_pkt->timestamp = timestamp;
+ *keyevent_pkt = (struct kdb_keyinfo_pkt) {
+ .keycode = key,
+ .scancode = scancode,
+ .state = state,
+ .timestamp = clock_systime()
+ };
}
// kprintf(KDEBUG "%c (t=%d, s=%x, c=%d)\n", key & 0x00ff, timestamp, state, key >> 8);
}
void intr_ps2_kbd_handler(const isr_param* param) {
- uint8_t scancode = io_inb(PS2_PORT_ENC_DATA) & 0xff;
+
+ // Do not move this line. It is in the right place and right order.
+ // This is to ensure we've cleared the output buffer everytime, so it won't pile up across irqs.
+ uint8_t scancode = io_inb(PS2_PORT_ENC_DATA);
kbd_keycode_t key;
- // 用于区分0xfe,0xfa等指令返回码。
- if (scancode >= 0xFA) {
+ /*
+ * 判断键盘是否处在指令发送状态,防止误触发。(伪输入中断)
+ * 这是因为我们需要向ps/2设备发送指令(比如控制led灯),而指令会有返回码。
+ * 这就会有可能导致ps/2控制器在受到我们的命令后(在ps2_process_cmd中),
+ * 产生IRQ#1中断(虽然说这种情况取决于底层BIOS实现,但还是会发生,比如QEMU和bochs)。
+ * 所以这就是说,当IRQ#1中断产生时,我们的CPU正处在另一个ISR中。这样就会导致所有的外部中断被缓存在APIC内部的
+ * FIFO队列里,进行排队等待(APIC长度为二的队列 {IRR, TMR};参考 Intel Manual Vol.3A 10.8.4)
+ * 那么当ps2_process_cmd执行完后(内嵌在#APIC_TIMER_IV),CPU返回EOI给APIC,APIC紧接着将排在队里的IRQ#1发送给CPU
+ * 造成误触发。也就是说,我们此时读入的scancode实则上是上一个指令的返回代码。
+ *
+ * Problem 1:
+ * 但是这种方法有个问题,那就是,假若我们的某一个命令失败了一次,ps/2给出0xfe,我们重传,ps/2收到指令并给出0xfa。
+ * 那么这样一来,将会由两个连续的IRQ#1产生。而APIC是最多可以缓存两个IRQ,于是我们就会漏掉一个IRQ,依然会误触发。
+ */
+ // FIXME: Address Problem #1
+ // if ((kbd_state.state & KBD_STATE_CMDPROCS)) {
+ // kbd_state.state &= ~KBD_STATE_CMDPROCS;
+ // return;
+ // }
+
+ // 目前还是使用该方法。。。
+ if (scancode >= 0xfa) {
return;
}
switch (kbd_state.state)
{
- case KBD_STATE_WAIT_KEY:
+ case KBD_STATE_KWAIT:
if (scancode == 0xf0) { // release code
- kbd_state.state = KBD_STATE_RELEASED;
+ kbd_state.state = KBD_STATE_KRELEASED;
} else if (scancode == 0xe0) {
- kbd_state.state = KBD_STATE_SPECIAL;
+ kbd_state.state = KBD_STATE_KSPECIAL;
kbd_state.translation_table = scancode_set2_ex;
} else {
key = kbd_state.translation_table[scancode];
kbd_buffer_key_event(key, scancode, KBD_KEY_FPRESSED);
}
break;
- case KBD_STATE_SPECIAL:
+ case KBD_STATE_KSPECIAL:
if (scancode == 0xf0) { //release code
- kbd_state.state = KBD_STATE_RELEASED;
+ kbd_state.state = KBD_STATE_KRELEASED;
} else {
key = kbd_state.translation_table[scancode];
kbd_buffer_key_event(key, scancode, KBD_KEY_FPRESSED);
- kbd_state.state = KBD_STATE_WAIT_KEY;
+ kbd_state.state = KBD_STATE_KWAIT;
kbd_state.translation_table = scancode_set2;
}
break;
- case KBD_STATE_RELEASED:
+ case KBD_STATE_KRELEASED:
key = kbd_state.translation_table[scancode];
kbd_buffer_key_event(key, scancode, KBD_KEY_FRELEASED);
// reset the translation table to scancode_set2
- kbd_state.state = KBD_STATE_WAIT_KEY;
+ kbd_state.state = KBD_STATE_KWAIT;
kbd_state.translation_table = scancode_set2;
break;
struct kdb_keyinfo_pkt* pkt_current = &key_buf.buffer[key_buf.read_ptr];
- pkt_copy->keycode = pkt_current->keycode;
- pkt_copy->scancode = pkt_current->scancode;
- pkt_copy->state = pkt_current->state;
- pkt_copy->timestamp = pkt_current->timestamp;
+ *pkt_copy = *pkt_current;
key_buf.buffered_len--;
key_buf.read_ptr = (key_buf.read_ptr + 1) % PS2_KBD_RECV_BUFFER_SIZE;
key_buf.lock = 0;
return pkt_copy;
+}
+
+static struct kdb_keyinfo_pkt* ps2_keybuffer_next_write() {
+ int index = (key_buf.read_ptr + key_buf.buffered_len) % PS2_KBD_RECV_BUFFER_SIZE;
+ if (index == key_buf.read_ptr && key_buf.buffered_len) {
+ // the reader is lagged so much such that the buffer is full.
+ // It is suggested to read from beginning for nearly up-to-date readings.
+ key_buf.read_ptr = 0;
+ key_buf.buffered_len = index;
+ }
+ else {
+ key_buf.buffered_len++;
+ }
+ return &key_buf.buffer[index];
}
\ No newline at end of file