-#include <arch/abi.h>
-#include <arch/x86/interrupts.h>
+#include <sys/abi.h>
+#include <sys/interrupts.h>
+#include <sys/mm/mempart.h>
-#include <hal/apic.h>
-#include <hal/cpu.h>
+#include <hal/intc.h>
+#include <sys/cpu.h>
#include <lunaix/fs/taskfs.h>
#include <lunaix/mm/cake.h>
extern void my_dummy();
static char dummy_stack[DUMMY_STACK_SIZE] __attribute__((aligned(16)));
- struct exec_param* execp =
- (void*)dummy_stack + DUMMY_STACK_SIZE - sizeof(struct exec_param);
+ ptr_t stktop = (ptr_t)dummy_stack + DUMMY_STACK_SIZE;
- isr_param* isrp = (void*)execp - sizeof(isr_param);
-
- *execp = (struct exec_param){
- .cs = KCODE_SEG,
- .eflags = cpu_reflags() | 0x0200,
- .eip = (ptr_t)my_dummy,
- .ss = KDATA_SEG,
- };
-
- *isrp = (isr_param){ .registers = { .ds = KDATA_SEG,
- .es = KDATA_SEG,
- .fs = KDATA_SEG,
- .gs = KDATA_SEG },
- .execp = execp };
-
- // memset to 0
dummy_proc = (struct proc_info){};
- dummy_proc.intr_ctx = isrp;
- dummy_proc.page_table = cpu_rcr3();
+ proc_init_transfer(&dummy_proc, stktop, (ptr_t)my_dummy, TRANSFER_IE);
+
+ dummy_proc.page_table = cpu_ldvmspace();
dummy_proc.state = PS_READY;
dummy_proc.parent = &dummy_proc;
dummy_proc.pid = KERNEL_PID;
{
proc->state = PS_RUNNING;
- /*
- 将tss.esp0设置为上次调度前的esp值。
- 当处理信号时,上下文信息是不会恢复的,而是保存在用户栈中,然后直接跳转进位于用户空间的sig_wrapper进行
- 信号的处理。当用户自定义的信号处理函数返回时,sigreturn的系统调用才开始进行上下文的恢复(或者说是进行
- 另一次调度。
- 由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
- 这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
- */
-
- apic_done_servicing();
-
- asm volatile("pushl %0\n"
- "jmp switch_to\n" ::"r"(proc)
- : "memory"); // kernel/asm/x86/interrupt.S
+ intc_notify_eos(0);
+ switch_context(proc);
}
int
{
struct proc_info* leader = sched_ctx._procs[0];
struct proc_info *pos, *n;
- time_t now = clock_systime();
+ time_t now = clock_systime() / 1000;
llist_for_each(pos, n, &leader->sleep.sleepers, sleep.sleepers)
{
if (proc_terminated(pos)) {
sched_yieldk()
{
cpu_enable_interrupt();
- cpu_int(LUNAIX_SCHED);
+ cpu_trap_sched();
}
__DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
return 0;
}
+ time_t systime = clock_systime() / 1000;
+
if (__current->sleep.wakeup_time) {
- return (__current->sleep.wakeup_time - clock_systime()) / 1000U;
+ return (__current->sleep.wakeup_time - systime);
}
struct proc_info* root_proc = sched_ctx._procs[0];
- __current->sleep.wakeup_time = clock_systime() + seconds * 1000;
+ __current->sleep.wakeup_time = systime + seconds;
if (llist_empty(&__current->sleep.sleepers)) {
llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
__DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
{
time_t prev_ddl = __current->sleep.alarm_time;
- time_t now = clock_systime();
+ time_t now = clock_systime() / 1000;
- __current->sleep.alarm_time = seconds ? now + seconds * 1000 : 0;
+ __current->sleep.alarm_time = seconds ? now + seconds : 0;
struct proc_info* root_proc = sched_ctx._procs[0];
if (llist_empty(&__current->sleep.sleepers)) {
llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
}
- return prev_ddl ? (prev_ddl - now) / 1000 : 0;
+ return prev_ddl ? (prev_ddl - now) : 0;
}
__DEFINE_LXSYSCALL1(void, exit, int, status)
llist_init_head(&proc->children);
llist_init_head(&proc->grp_member);
llist_init_head(&proc->sleep.sleepers);
+
+ iopoll_init(&proc->pollctx);
waitq_init(&proc->waitqueue);
sched_ctx._procs[i] = proc;
llist_delete(&proc->tasks);
llist_delete(&proc->sleep.sleepers);
+ iopoll_free(pid, &proc->pollctx);
+
taskfs_invalidate(pid);
if (proc->cwd) {