sched_init_dummy();
}
+#define DUMMY_STACK_SIZE 2048
+
void
sched_init_dummy()
{
// It is a living nightmare!
extern void my_dummy();
- static char dummy_stack[1024] __attribute__((aligned(16)));
+ static char dummy_stack[DUMMY_STACK_SIZE] __attribute__((aligned(16)));
+
+ struct exec_param* execp =
+ (void*)dummy_stack + DUMMY_STACK_SIZE - sizeof(struct exec_param);
+
+ *execp = (struct exec_param){
+ .cs = KCODE_SEG,
+ .eflags = cpu_reflags() | 0x0200,
+ .eip = (void*)my_dummy,
+ .ss = KDATA_SEG,
+ };
// memset to 0
dummy_proc = (struct proc_info){};
- dummy_proc.intr_ctx =
- (isr_param){ .registers = { .ds = KDATA_SEG,
- .es = KDATA_SEG,
- .fs = KDATA_SEG,
- .gs = KDATA_SEG,
- .esp = (void*)dummy_stack + 1004 },
- .cs = KCODE_SEG,
- .eip = (void*)my_dummy,
- .ss = KDATA_SEG,
- .eflags = cpu_reflags() | 0x0200 };
-
- *(u32_t*)(&dummy_stack[1020]) = dummy_proc.intr_ctx.eflags;
- *(u32_t*)(&dummy_stack[1016]) = KCODE_SEG;
- *(u32_t*)(&dummy_stack[1012]) = dummy_proc.intr_ctx.eip;
+ dummy_proc.intr_ctx = (isr_param){ .registers = { .ds = KDATA_SEG,
+ .es = KDATA_SEG,
+ .fs = KDATA_SEG,
+ .gs = KDATA_SEG },
+ .execp = execp };
dummy_proc.page_table = cpu_rcr3();
dummy_proc.state = PS_READY;
dummy_proc.parent = &dummy_proc;
+ dummy_proc.pid = KERNEL_PID;
__current = &dummy_proc;
}
由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
*/
- tss_update_esp(proc->intr_ctx.registers.esp);
+ tss_update_esp(proc->intr_ctx.esp);
apic_done_servicing();