-#include <arch/x86/interrupts.h>
-#include <arch/x86/tss.h>
+#include <sys/abi.h>
+#include <sys/interrupts.h>
+#include <sys/mm/mempart.h>
-#include <hal/apic.h>
-#include <hal/cpu.h>
+#include <hal/intc.h>
+#include <sys/cpu.h>
#include <lunaix/fs/taskfs.h>
#include <lunaix/mm/cake.h>
-#include <lunaix/mm/kalloc.h>
#include <lunaix/mm/mmap.h>
#include <lunaix/mm/pmm.h>
#include <lunaix/mm/valloc.h>
#include <lunaix/syscall.h>
#include <lunaix/syslog.h>
+#include <klibc/string.h>
+
volatile struct proc_info* __current;
static struct proc_info dummy_proc;
proc_pile = cake_new_pile("proc", sizeof(struct proc_info), 1, 0);
cake_set_constructor(proc_pile, cake_ctor_zeroing);
- sched_ctx = (struct scheduler){ ._procs = vzalloc(PROC_TABLE_SIZE),
- .ptable_len = 0,
- .procs_index = 0 };
+ sched_ctx = (struct scheduler){
+ ._procs = vzalloc(PROC_TABLE_SIZE), .ptable_len = 0, .procs_index = 0};
// TODO initialize dummy_proc
sched_init_dummy();
extern void my_dummy();
static char dummy_stack[DUMMY_STACK_SIZE] __attribute__((aligned(16)));
- // memset to 0
+ ptr_t stktop = (ptr_t)dummy_stack + DUMMY_STACK_SIZE;
+
dummy_proc = (struct proc_info){};
- dummy_proc.intr_ctx = (isr_param){
- .registers = { .ds = KDATA_SEG,
- .es = KDATA_SEG,
- .fs = KDATA_SEG,
- .gs = KDATA_SEG,
- .esp = (void*)dummy_stack + DUMMY_STACK_SIZE - 20 },
- .cs = KCODE_SEG,
- .eip = (void*)my_dummy,
- .ss = KDATA_SEG,
- .eflags = cpu_reflags() | 0x0200
- };
-
- *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 4]) = dummy_proc.intr_ctx.eflags;
- *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 8]) = KCODE_SEG;
- *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 12]) = dummy_proc.intr_ctx.eip;
-
- dummy_proc.page_table = cpu_rcr3();
+
+ proc_init_transfer(&dummy_proc, stktop, (ptr_t)my_dummy, TRANSFER_IE);
+
+ dummy_proc.page_table = cpu_ldvmspace();
dummy_proc.state = PS_READY;
dummy_proc.parent = &dummy_proc;
dummy_proc.pid = KERNEL_PID;
{
proc->state = PS_RUNNING;
- /*
- 将tss.esp0设置为上次调度前的esp值。
- 当处理信号时,上下文信息是不会恢复的,而是保存在用户栈中,然后直接跳转进位于用户空间的sig_wrapper进行
- 信号的处理。当用户自定义的信号处理函数返回时,sigreturn的系统调用才开始进行上下文的恢复(或者说是进行
- 另一次调度。
- 由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
- 这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
- */
- tss_update_esp(proc->intr_ctx.registers.esp);
-
- apic_done_servicing();
-
- asm volatile("pushl %0\n"
- "jmp switch_to\n" ::"r"(proc)
- : "memory"); // kernel/asm/x86/interrupt.S
+ intc_notify_eos(0);
+ switch_context(proc);
}
int
can_schedule(struct proc_info* proc)
{
- if (__SIGTEST(proc->sig_pending, _SIGCONT)) {
- __SIGCLEAR(proc->sig_pending, _SIGSTOP);
- } else if (__SIGTEST(proc->sig_pending, _SIGSTOP)) {
+ if (!proc) {
+ return 0;
+ }
+
+ struct sighail* sh = &proc->sigctx;
+
+ if ((proc->state & PS_PAUSED)) {
+ return !!(sh->sig_pending & ~1);
+ }
+ if ((proc->state & PS_BLOCKED)) {
+ return sigset_test(sh->sig_pending, _SIGINT);
+ }
+
+ if (sigset_test(sh->sig_pending, _SIGCONT)) {
+ sigset_clear(sh->sig_pending, _SIGSTOP);
+ } else if (sigset_test(sh->sig_pending, _SIGSTOP)) {
// 如果进程受到SIGSTOP,则该进程不给予调度。
return 0;
}
- return 1;
+ return (proc->state == PS_READY);
}
void
{
struct proc_info* leader = sched_ctx._procs[0];
struct proc_info *pos, *n;
- time_t now = clock_systime();
+ time_t now = clock_systime() / 1000;
llist_for_each(pos, n, &leader->sleep.sleepers, sleep.sleepers)
{
- if (PROC_TERMINATED(pos->state)) {
+ if (proc_terminated(pos)) {
goto del;
}
if (atime && now >= atime) {
pos->sleep.alarm_time = 0;
- __SIGSET(pos->sig_pending, _SIGALRM);
+ proc_setsignal(pos, _SIGALRM);
}
if (!wtime && !atime) {
struct proc_info* next;
int prev_ptr = sched_ctx.procs_index;
int ptr = prev_ptr;
+ int found = 0;
if (!(__current->state & ~PS_RUNNING)) {
__current->state = PS_READY;
check_sleepers();
// round-robin scheduler
-redo:
do {
ptr = (ptr + 1) % sched_ctx.ptable_len;
next = sched_ctx._procs[ptr];
- } while (!next || (next->state != PS_READY && ptr != prev_ptr));
- sched_ctx.procs_index = ptr;
-
- if (next->state != PS_READY) {
- // schedule the dummy process if we're out of choice
- next = &dummy_proc;
- goto done;
- }
+ if (!(found = can_schedule(next))) {
+ if (ptr == prev_ptr) {
+ next = &dummy_proc;
+ goto done;
+ }
+ }
+ } while (!found);
- if (!can_schedule(next)) {
- // 如果该进程不给予调度,则尝试重新选择
- goto redo;
- }
+ sched_ctx.procs_index = ptr;
done:
run(next);
sched_yieldk()
{
cpu_enable_interrupt();
- cpu_int(LUNAIX_SCHED);
+ cpu_trap_sched();
}
__DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
return 0;
}
+ time_t systime = clock_systime() / 1000;
+
if (__current->sleep.wakeup_time) {
- return (__current->sleep.wakeup_time - clock_systime()) / 1000U;
+ return (__current->sleep.wakeup_time - systime);
}
struct proc_info* root_proc = sched_ctx._procs[0];
- __current->sleep.wakeup_time = clock_systime() + seconds * 1000;
- llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
+ __current->sleep.wakeup_time = systime + seconds;
- __current->intr_ctx.registers.eax = seconds;
+ if (llist_empty(&__current->sleep.sleepers)) {
+ llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
+ }
+
+ store_retval(seconds);
block_current();
schedule();
+
+ return 0;
}
__DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
{
time_t prev_ddl = __current->sleep.alarm_time;
- time_t now = clock_systime();
+ time_t now = clock_systime() / 1000;
- __current->sleep.alarm_time = seconds ? now + seconds * 1000 : 0;
+ __current->sleep.alarm_time = seconds ? now + seconds : 0;
struct proc_info* root_proc = sched_ctx._procs[0];
if (llist_empty(&__current->sleep.sleepers)) {
llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
}
- return prev_ddl ? (prev_ddl - now) / 1000 : 0;
+ return prev_ddl ? (prev_ddl - now) : 0;
}
__DEFINE_LXSYSCALL1(void, exit, int, status)
goto repeat;
done:
- status_flags |= PEXITSIG * (proc->sig_inprogress != 0);
if (status) {
*status = proc->exit_code | status_flags;
}
proc->state = PS_CREATED;
proc->pid = i;
+ proc->mm.pid = i;
proc->created = clock_systime();
proc->pgid = proc->pid;
proc->fdtable = vzalloc(sizeof(struct v_fdtable));
- proc->fxstate =
- vzalloc_dma(512); // FXSAVE需要十六位对齐地址,使用DMA块(128位对齐)
llist_init_head(&proc->mm.regions);
llist_init_head(&proc->tasks);
llist_init_head(&proc->children);
llist_init_head(&proc->grp_member);
llist_init_head(&proc->sleep.sleepers);
+
+ iopoll_init(&proc->pollctx);
waitq_init(&proc->waitqueue);
sched_ctx._procs[i] = proc;
// from <kernel/process.c>
extern void
-__del_pagetable(pid_t pid, uintptr_t mount_point);
+__del_pagetable(pid_t pid, ptr_t mount_point);
pid_t
destroy_process(pid_t pid)
int index = pid;
if (index <= 0 || index > sched_ctx.ptable_len) {
__current->k_status = EINVAL;
- return;
+ return -1;
}
+
struct proc_info* proc = sched_ctx._procs[index];
sched_ctx._procs[index] = 0;
llist_delete(&proc->tasks);
llist_delete(&proc->sleep.sleepers);
+ iopoll_free(pid, &proc->pollctx);
+
taskfs_invalidate(pid);
if (proc->cwd) {
}
vfree(proc->fdtable);
- vfree_dma(proc->fxstate);
vmm_mount_pd(VMS_MOUNT_1, proc->page_table);
llist_for_each(pos, n, &proc->mm.regions, head)
{
mem_sync_pages(VMS_MOUNT_1, pos, pos->start, pos->end - pos->start, 0);
- region_release(pid, pos);
+ region_release(pos);
}
__del_pagetable(pid, VMS_MOUNT_1);
__current->state = PS_TERMNAT;
__current->exit_code = exit_code;
- __SIGSET(__current->parent->sig_pending, _SIGCHLD);
+ proc_setsignal(__current->parent, _SIGCHLD);
}
struct proc_info*
// 如果其父进程的状态是terminated 或 destroy中的一种
// 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
- return PROC_TERMINATED(parent->state) || parent->created > proc->created;
+ return proc_terminated(parent) || parent->created > proc->created;
}
\ No newline at end of file