refactor: elf parsing utility and exec related
[lunaix-os.git] / lunaix-os / kernel / process / sched.c
index de1a4a59f6477184838eadc0e2f777a23d16c546..edde8bc79f54f9c677207fce9813f5e79a88a6fa 100644 (file)
@@ -6,7 +6,6 @@
 
 #include <lunaix/fs/taskfs.h>
 #include <lunaix/mm/cake.h>
-#include <lunaix/mm/kalloc.h>
 #include <lunaix/mm/mmap.h>
 #include <lunaix/mm/pmm.h>
 #include <lunaix/mm/valloc.h>
@@ -19,6 +18,8 @@
 #include <lunaix/syscall.h>
 #include <lunaix/syslog.h>
 
+#include <klibc/string.h>
+
 volatile struct proc_info* __current;
 
 static struct proc_info dummy_proc;
@@ -59,23 +60,23 @@ sched_init_dummy()
     extern void my_dummy();
     static char dummy_stack[DUMMY_STACK_SIZE] __attribute__((aligned(16)));
 
-    // memset to 0
-    dummy_proc = (struct proc_info){};
-    dummy_proc.intr_ctx = (isr_param){
-        .registers = { .ds = KDATA_SEG,
-                       .es = KDATA_SEG,
-                       .fs = KDATA_SEG,
-                       .gs = KDATA_SEG,
-                       .esp = (void*)dummy_stack + DUMMY_STACK_SIZE - 20 },
+    struct exec_param* execp =
+      (void*)dummy_stack + DUMMY_STACK_SIZE - sizeof(struct exec_param);
+
+    *execp = (struct exec_param){
         .cs = KCODE_SEG,
+        .eflags = cpu_reflags() | 0x0200,
         .eip = (void*)my_dummy,
         .ss = KDATA_SEG,
-        .eflags = cpu_reflags() | 0x0200
     };
 
-    *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 4]) = dummy_proc.intr_ctx.eflags;
-    *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 8]) = KCODE_SEG;
-    *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 12]) = dummy_proc.intr_ctx.eip;
+    // memset to 0
+    dummy_proc = (struct proc_info){};
+    dummy_proc.intr_ctx = (isr_param){ .registers = { .ds = KDATA_SEG,
+                                                      .es = KDATA_SEG,
+                                                      .fs = KDATA_SEG,
+                                                      .gs = KDATA_SEG },
+                                       .execp = execp };
 
     dummy_proc.page_table = cpu_rcr3();
     dummy_proc.state = PS_READY;
@@ -98,7 +99,7 @@ run(struct proc_info* proc)
         由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
         这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
     */
-    tss_update_esp(proc->intr_ctx.registers.esp);
+    tss_update_esp(proc->intr_ctx.esp);
 
     apic_done_servicing();
 
@@ -214,7 +215,10 @@ __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
 
     struct proc_info* root_proc = sched_ctx._procs[0];
     __current->sleep.wakeup_time = clock_systime() + seconds * 1000;
-    llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
+
+    if (llist_empty(&__current->sleep.sleepers)) {
+        llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
+    }
 
     __current->intr_ctx.registers.eax = seconds;
 
@@ -325,6 +329,7 @@ alloc_process()
 
     proc->state = PS_CREATED;
     proc->pid = i;
+    proc->mm.pid = i;
     proc->created = clock_systime();
     proc->pgid = proc->pid;
     proc->fdtable = vzalloc(sizeof(struct v_fdtable));
@@ -407,7 +412,7 @@ destroy_process(pid_t pid)
     llist_for_each(pos, n, &proc->mm.regions, head)
     {
         mem_sync_pages(VMS_MOUNT_1, pos, pos->start, pos->end - pos->start, 0);
-        region_release(pid, pos);
+        region_release(pos);
     }
 
     __del_pagetable(pid, VMS_MOUNT_1);