-#include <lunaix/process.h>
-#include <lunaix/sched.h>
-#include <lunaix/mm/vmm.h>
-#include <lunaix/mm/kalloc.h>
-#include <hal/cpu.h>
#include <arch/x86/interrupts.h>
#include <arch/x86/tss.h>
#include <hal/apic.h>
+#include <hal/cpu.h>
+#include <lunaix/mm/kalloc.h>
+#include <lunaix/mm/vmm.h>
+#include <lunaix/process.h>
+#include <lunaix/sched.h>
#include <lunaix/spike.h>
#include <lunaix/status.h>
-#include <lunaix/syslog.h>
#include <lunaix/syscall.h>
+#include <lunaix/syslog.h>
#define MAX_PROCESS 512
LOG_MODULE("SCHED")
-void sched_init() {
+void
+sched_init()
+{
size_t pg_size = ROUNDUP(sizeof(struct proc_info) * MAX_PROCESS, 0x1000);
- assert_msg(
- vmm_alloc_pages(KERNEL_PID, &__proc_table, pg_size, PG_PREM_RW, PP_FGPERSIST),
- "Fail to allocate proc table"
- );
-
- sched_ctx = (struct scheduler) {
- ._procs = (struct proc_info*) &__proc_table,
- .ptable_len = 0,
- .procs_index = 0
- };
+ assert_msg(vmm_alloc_pages(
+ KERNEL_PID, &__proc_table, pg_size, PG_PREM_RW, PP_FGPERSIST),
+ "Fail to allocate proc table");
+
+ sched_ctx = (struct scheduler){ ._procs = (struct proc_info*)&__proc_table,
+ .ptable_len = 0,
+ .procs_index = 0 };
}
-void run(struct proc_info* proc) {
+void
+run(struct proc_info* proc)
+{
if (!(__current->state & ~PROC_RUNNING)) {
__current->state = PROC_STOPPED;
}
proc->state = PROC_RUNNING;
-
+
// FIXME: 这里还是得再考虑一下。
// tss_update_esp(__current->intr_ctx.esp);
__current = proc;
cpu_lcr3(__current->page_table);
// from now on, the we are in the kstack of another process
- }
- else {
+ } else {
__current = proc;
}
apic_done_servicing();
- asm volatile (
- "pushl %0\n"
- "jmp soft_iret\n"::"r"(&__current->intr_ctx): "memory");
+ asm volatile("movl %0, %%eax\n"
+ "jmp soft_iret\n" ::"r"(&__current->intr_ctx)
+ : "eax", "memory");
}
-void schedule() {
+void
+schedule()
+{
if (!sched_ctx.ptable_len) {
return;
}
+ // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序……
+ cpu_disable_interrupt();
struct proc_info* next;
int prev_ptr = sched_ctx.procs_index;
int ptr = prev_ptr;
do {
ptr = (ptr + 1) % sched_ctx.ptable_len;
next = &sched_ctx._procs[ptr];
- } while(next->state != PROC_STOPPED && ptr != prev_ptr);
-
- sched_ctx.procs_index = ptr;
+ } while (next->state != PROC_STOPPED && ptr != prev_ptr);
+ sched_ctx.procs_index = ptr;
run(next);
}
-static void proc_timer_callback(struct proc_info* proc) {
+static void
+proc_timer_callback(struct proc_info* proc)
+{
proc->timer = NULL;
proc->state = PROC_STOPPED;
}
-__DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds) {
+__DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
+{
// FIXME: sleep的实现或许需要改一下。专门绑一个计时器好像没有必要……
if (!seconds) {
return 0;
}
+
if (__current->timer) {
return __current->timer->counter / timer_context()->running_frequency;
}
- struct lx_timer* timer = timer_run_second(seconds, proc_timer_callback, __current, 0);
+ struct lx_timer* timer =
+ timer_run_second(seconds, proc_timer_callback, __current, 0);
__current->timer = timer;
__current->intr_ctx.registers.eax = seconds;
__current->state = PROC_BLOCKED;
schedule();
}
-__DEFINE_LXSYSCALL1(void, exit, int, status) {
+__DEFINE_LXSYSCALL1(void, exit, int, status)
+{
terminate_proc(status);
}
-__DEFINE_LXSYSCALL(void, yield) {
+__DEFINE_LXSYSCALL(void, yield)
+{
schedule();
}
-__DEFINE_LXSYSCALL1(pid_t, wait, int*, status) {
+pid_t
+_wait(pid_t wpid, int* status, int options);
+
+__DEFINE_LXSYSCALL1(pid_t, wait, int*, status)
+{
+ return _wait(-1, status, 0);
+}
+
+__DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options)
+{
+ return _wait(pid, status, options);
+}
+
+pid_t
+_wait(pid_t wpid, int* status, int options)
+{
pid_t cur = __current->pid;
+ int status_flags = 0;
struct proc_info *proc, *n;
if (llist_empty(&__current->children)) {
return -1;
}
+
+ wpid = wpid ? wpid : -__current->pgid;
+ cpu_enable_interrupt();
repeat:
- llist_for_each(proc, n, &__current->children, siblings) {
- if (proc->state == PROC_TERMNAT) {
- goto done;
+ llist_for_each(proc, n, &__current->children, siblings)
+ {
+ if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) {
+ if (proc->state == PROC_TERMNAT && !options) {
+ status_flags |= PROCTERM;
+ goto done;
+ }
+ if (proc->state == PROC_STOPPED && (options & WUNTRACED)) {
+ status_flags |= PROCSTOP;
+ goto done;
+ }
}
}
- // FIXME: 除了循环,也许有更高效的办法…… (在这里进行schedule,需要重写context switch!)
+ if ((options & WNOHANG)) {
+ return 0;
+ }
+ // 放弃当前的运行机会
+ sched_yield();
goto repeat;
done:
- *status = proc->exit_code;
+ cpu_disable_interrupt();
+ *status = (proc->exit_code & 0xffff) | status_flags;
return destroy_process(proc->pid);
}
-pid_t alloc_pid() {
+pid_t
+alloc_pid()
+{
pid_t i = 0;
- for (; i < sched_ctx.ptable_len && sched_ctx._procs[i].state != PROC_DESTROY; i++);
+ for (;
+ i < sched_ctx.ptable_len && sched_ctx._procs[i].state != PROC_DESTROY;
+ i++)
+ ;
if (i == MAX_PROCESS) {
- panick("Process table is full");
+ panick("Panic in Ponyville shimmer!");
}
- return i + 1;
+ return i;
}
-void push_process(struct proc_info* process) {
- int index = process->pid - 1;
+void
+push_process(struct proc_info* process)
+{
+ int index = process->pid;
if (index < 0 || index > sched_ctx.ptable_len) {
__current->k_status = LXINVLDPID;
return;
}
-
+
if (index == sched_ctx.ptable_len) {
sched_ctx.ptable_len++;
}
-
+
sched_ctx._procs[index] = *process;
process = &sched_ctx._procs[index];
- // make sure the address is in the range of process table
+ // make sure the reference is relative to process table
llist_init_head(&process->children);
+ llist_init_head(&process->grp_member);
+
// every process is the child of first process (pid=1)
if (process->parent) {
llist_append(&process->parent->children, &process->siblings);
- }
- else {
+ } else {
process->parent = &sched_ctx._procs[0];
}
- process->state = PROC_STOPPED;
+ process->state = PROC_STOPPED;
}
// from <kernel/process.c>
-extern void __del_pagetable(pid_t pid, uintptr_t mount_point);
+extern void
+__del_pagetable(pid_t pid, uintptr_t mount_point);
-pid_t destroy_process(pid_t pid) {
- int index = pid - 1;
+pid_t
+destroy_process(pid_t pid)
+{
+ int index = pid;
if (index <= 0 || index > sched_ctx.ptable_len) {
__current->k_status = LXINVLDPID;
return;
}
- struct proc_info *proc = &sched_ctx._procs[index];
+ struct proc_info* proc = &sched_ctx._procs[index];
proc->state = PROC_DESTROY;
llist_delete(&proc->siblings);
if (proc->mm.regions) {
struct mm_region *pos, *n;
- llist_for_each(pos, n, &proc->mm.regions->head, head) {
+ llist_for_each(pos, n, &proc->mm.regions->head, head)
+ {
lxfree(pos);
}
}
return pid;
}
-void terminate_proc(int exit_code) {
+void
+terminate_proc(int exit_code)
+{
__current->state = PROC_TERMNAT;
__current->exit_code = exit_code;
schedule();
}
-struct proc_info* get_process(pid_t pid) {
- int index = pid - 1;
+struct proc_info*
+get_process(pid_t pid)
+{
+ int index = pid;
if (index < 0 || index > sched_ctx.ptable_len) {
return NULL;
}
return &sched_ctx._procs[index];
}
-int orphaned_proc(pid_t pid) {
- if(!pid) return 0;
- if(pid >= sched_ctx.ptable_len) return 0;
- struct proc_info* proc = &sched_ctx._procs[pid-1];
+int
+orphaned_proc(pid_t pid)
+{
+ if (!pid)
+ return 0;
+ if (pid >= sched_ctx.ptable_len)
+ return 0;
+ struct proc_info* proc = &sched_ctx._procs[pid];
struct proc_info* parent = proc->parent;
-
+
// 如果其父进程的状态是terminated 或 destroy中的一种
// 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
return (parent->state & PROC_TERMMASK) || parent->created > proc->created;