#include <lunaix/fs/taskfs.h>
#include <lunaix/mm/cake.h>
-#include <lunaix/mm/kalloc.h>
+#include <lunaix/mm/mmap.h>
#include <lunaix/mm/pmm.h>
#include <lunaix/mm/valloc.h>
#include <lunaix/mm/vmm.h>
#include <lunaix/syscall.h>
#include <lunaix/syslog.h>
+#include <klibc/string.h>
+
volatile struct proc_info* __current;
static struct proc_info dummy_proc;
extern void my_dummy();
static char dummy_stack[DUMMY_STACK_SIZE] __attribute__((aligned(16)));
- // memset to 0
- dummy_proc = (struct proc_info){};
- dummy_proc.intr_ctx = (isr_param){
- .registers = { .ds = KDATA_SEG,
- .es = KDATA_SEG,
- .fs = KDATA_SEG,
- .gs = KDATA_SEG,
- .esp = (void*)dummy_stack + DUMMY_STACK_SIZE - 20 },
+ struct exec_param* execp =
+ (void*)dummy_stack + DUMMY_STACK_SIZE - sizeof(struct exec_param);
+
+ *execp = (struct exec_param){
.cs = KCODE_SEG,
- .eip = (void*)my_dummy,
+ .eflags = cpu_reflags() | 0x0200,
+ .eip = (ptr_t)my_dummy,
.ss = KDATA_SEG,
- .eflags = cpu_reflags() | 0x0200
};
- *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 4]) = dummy_proc.intr_ctx.eflags;
- *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 8]) = KCODE_SEG;
- *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 12]) = dummy_proc.intr_ctx.eip;
+ // memset to 0
+ dummy_proc = (struct proc_info){};
+ dummy_proc.intr_ctx = (isr_param){ .registers = { .ds = KDATA_SEG,
+ .es = KDATA_SEG,
+ .fs = KDATA_SEG,
+ .gs = KDATA_SEG },
+ .execp = execp };
dummy_proc.page_table = cpu_rcr3();
dummy_proc.state = PS_READY;
由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
*/
- tss_update_esp(proc->intr_ctx.registers.esp);
+ tss_update_esp(proc->intr_ctx.esp);
apic_done_servicing();
int
can_schedule(struct proc_info* proc)
{
- if (__SIGTEST(proc->sig_pending, _SIGCONT)) {
- __SIGCLEAR(proc->sig_pending, _SIGSTOP);
- } else if (__SIGTEST(proc->sig_pending, _SIGSTOP)) {
+ if (!proc) {
+ return 0;
+ }
+
+ struct sighail* sh = &proc->sigctx;
+
+ if ((proc->state & PS_PAUSED)) {
+ return !!(sh->sig_pending & ~1);
+ }
+
+ if (sigset_test(sh->sig_pending, _SIGCONT)) {
+ sigset_clear(sh->sig_pending, _SIGSTOP);
+ } else if (sigset_test(sh->sig_pending, _SIGSTOP)) {
// 如果进程受到SIGSTOP,则该进程不给予调度。
return 0;
}
- return 1;
+ return (proc->state == PS_READY);
}
void
if (atime && now >= atime) {
pos->sleep.alarm_time = 0;
- __SIGSET(pos->sig_pending, _SIGALRM);
+ proc_setsignal(pos, _SIGALRM);
}
if (!wtime && !atime) {
struct proc_info* next;
int prev_ptr = sched_ctx.procs_index;
int ptr = prev_ptr;
+ int found = 0;
if (!(__current->state & ~PS_RUNNING)) {
__current->state = PS_READY;
check_sleepers();
// round-robin scheduler
-redo:
do {
ptr = (ptr + 1) % sched_ctx.ptable_len;
next = sched_ctx._procs[ptr];
- } while (!next || (next->state != PS_READY && ptr != prev_ptr));
-
- sched_ctx.procs_index = ptr;
- if (next->state != PS_READY) {
- // schedule the dummy process if we're out of choice
- next = &dummy_proc;
- goto done;
- }
+ if (!(found = can_schedule(next))) {
+ if (ptr == prev_ptr) {
+ next = &dummy_proc;
+ goto done;
+ }
+ }
+ } while (!found);
- if (!can_schedule(next)) {
- // 如果该进程不给予调度,则尝试重新选择
- goto redo;
- }
+ sched_ctx.procs_index = ptr;
done:
run(next);
block_current();
schedule();
+
+ return 0;
}
__DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
goto repeat;
done:
- status_flags |= PEXITSIG * (proc->sig_inprogress != 0);
if (status) {
*status = proc->exit_code | status_flags;
}
proc->state = PS_CREATED;
proc->pid = i;
+ proc->mm.pid = i;
proc->created = clock_systime();
proc->pgid = proc->pid;
proc->fdtable = vzalloc(sizeof(struct v_fdtable));
proc->fxstate =
vzalloc_dma(512); // FXSAVE需要十六位对齐地址,使用DMA块(128位对齐)
- llist_init_head(&proc->mm.regions.head);
+ llist_init_head(&proc->mm.regions);
llist_init_head(&proc->tasks);
llist_init_head(&proc->children);
llist_init_head(&proc->grp_member);
// from <kernel/process.c>
extern void
-__del_pagetable(pid_t pid, uintptr_t mount_point);
+__del_pagetable(pid_t pid, ptr_t mount_point);
pid_t
destroy_process(pid_t pid)
int index = pid;
if (index <= 0 || index > sched_ctx.ptable_len) {
__current->k_status = EINVAL;
- return;
+ return -1;
}
+
struct proc_info* proc = sched_ctx._procs[index];
sched_ctx._procs[index] = 0;
vfree(proc->fdtable);
vfree_dma(proc->fxstate);
+ vmm_mount_pd(VMS_MOUNT_1, proc->page_table);
+
struct mm_region *pos, *n;
- llist_for_each(pos, n, &proc->mm.regions.head, head)
+ llist_for_each(pos, n, &proc->mm.regions, head)
{
- vfree(pos);
+ mem_sync_pages(VMS_MOUNT_1, pos, pos->start, pos->end - pos->start, 0);
+ region_release(pos);
}
- vmm_mount_pd(PD_MOUNT_1, proc->page_table);
-
- __del_pagetable(pid, PD_MOUNT_1);
+ __del_pagetable(pid, VMS_MOUNT_1);
- vmm_unmount_pd(PD_MOUNT_1);
+ vmm_unmount_pd(VMS_MOUNT_1);
cake_release(proc_pile, proc);
__current->state = PS_TERMNAT;
__current->exit_code = exit_code;
- __SIGSET(__current->parent->sig_pending, _SIGCHLD);
+ proc_setsignal(__current->parent, _SIGCHLD);
}
struct proc_info*