+int
+dmm_init(heap_context_t* heap)
+{
+ assert((uintptr_t)heap->start % BOUNDARY == 0);
+
+ heap->brk = heap->start;
+ mutex_init(&heap->lock);
+
+ return vmm_set_mapping(PD_REFERENCED,
+ heap->brk,
+ 0,
+ PG_WRITE | PG_ALLOW_USER,
+ VMAP_NULL) != NULL;
+}
+
+int
+lxbrk(heap_context_t* heap, void* addr, int user)
+{
+ return -(lxsbrk(heap, addr - heap->brk, user) == (void*)-1);
+}
+
+void*
+lxsbrk(heap_context_t* heap, size_t size, int user)
+{
+ if (size == 0) {
+ return heap->brk;
+ }
+
+ void* current_brk = heap->brk;
+
+ // The upper bound of our next brk of heap given the size.
+ // This will be used to calculate the page we need to allocate.
+ void* next = current_brk + ROUNDUP(size, BOUNDARY);
+
+ // any invalid situations
+ if (next >= heap->max_addr || next < current_brk) {
+ __current->k_status = LXINVLDPTR;
+ return (void*)-1;
+ }
+
+ uintptr_t diff = PG_ALIGN(next) - PG_ALIGN(current_brk);
+ if (diff) {
+ // if next do require new pages to be mapped
+ for (size_t i = 0; i < diff; i += PG_SIZE) {
+ vmm_set_mapping(PD_REFERENCED,
+ PG_ALIGN(current_brk) + PG_SIZE + i,
+ 0,
+ PG_WRITE | user,
+ VMAP_NULL);
+ }
+ }
+
+ heap->brk += size;
+ return current_brk;