X-Git-Url: https://scm.lunaixsky.com/lunaix-os.git/blobdiff_plain/48b4a227035048fdebcd32532deb7a857c6199ac..5ea8e2ba737f903db81d49b56778e883634512a5:/lunaix-os/kernel/sched.c diff --git a/lunaix-os/kernel/sched.c b/lunaix-os/kernel/sched.c index ed2cc74..2274238 100644 --- a/lunaix-os/kernel/sched.c +++ b/lunaix-os/kernel/sched.c @@ -1,120 +1,383 @@ -#include -#include -#include -#include #include +#include + #include +#include +#include +#include +#include +#include +#include +#include +#include #include #include +#include #include #define MAX_PROCESS 512 -struct proc_info* __current; -struct proc_info dummy; +volatile struct proc_info* __current; -extern void __proc_table; +struct proc_info dummy; struct scheduler sched_ctx; LOG_MODULE("SCHED") -void sched_init() { +void +sched_init() +{ size_t pg_size = ROUNDUP(sizeof(struct proc_info) * MAX_PROCESS, 0x1000); - assert_msg( - vmm_alloc_pages(KERNEL_PID, &__proc_table, pg_size, PG_PREM_RW, PP_FGPERSIST), - "Fail to allocate proc table" - ); - - sched_ctx = (struct scheduler) { - ._procs = (struct proc_info*) &__proc_table, - .ptable_len = 0, - .procs_index = 0 - }; - __current = &dummy; + for (size_t i = 0; i <= pg_size; i += 4096) { + uintptr_t pa = pmm_alloc_page(KERNEL_PID, PP_FGPERSIST); + vmm_set_mapping( + PD_REFERENCED, PROC_START + i, pa, PG_PREM_RW, VMAP_NULL); + } + + sched_ctx = (struct scheduler){ ._procs = (struct proc_info*)PROC_START, + .ptable_len = 0, + .procs_index = 0 }; +} + +void +run(struct proc_info* proc) +{ + proc->state = PS_RUNNING; + + /* + 将tss.esp0设置为上次调度前的esp值。 + 当处理信号时,上下文信息是不会恢复的,而是保存在用户栈中,然后直接跳转进位于用户空间的sig_wrapper进行 + 信号的处理。当用户自定义的信号处理函数返回时,sigreturn的系统调用才开始进行上下文的恢复(或者说是进行 + 另一次调度。 + 由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部 + 这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数) + */ + tss_update_esp(proc->intr_ctx.registers.esp); + + apic_done_servicing(); + + asm volatile("pushl %0\n" + "jmp switch_to\n" ::"r"(proc) + : "memory"); // kernel/asm/x86/interrupt.S +} + +int +can_schedule(struct proc_info* proc) +{ + if (__SIGTEST(proc->sig_pending, _SIGCONT)) { + __SIGCLEAR(proc->sig_pending, _SIGSTOP); + } else if (__SIGTEST(proc->sig_pending, _SIGSTOP)) { + // 如果进程受到SIGSTOP,则该进程不给予调度。 + return 0; + } + + return 1; +} + +void +check_sleepers() +{ + struct proc_info* leader = &sched_ctx._procs[0]; + struct proc_info *pos, *n; + time_t now = clock_systime(); + llist_for_each(pos, n, &leader->sleep.sleepers, sleep.sleepers) + { + if (PROC_TERMINATED(pos->state)) { + goto del; + } + + time_t wtime = pos->sleep.wakeup_time; + time_t atime = pos->sleep.alarm_time; + + if (wtime && now >= wtime) { + pos->sleep.wakeup_time = 0; + pos->state = PS_READY; + } + + if (atime && now >= atime) { + pos->sleep.alarm_time = 0; + __SIGSET(pos->sig_pending, _SIGALRM); + } + + if (!wtime && !atime) { + del: + llist_delete(&pos->sleep.sleepers); + } + } } -void schedule() { +void +schedule() +{ if (!sched_ctx.ptable_len) { return; } + // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序…… + cpu_disable_interrupt(); struct proc_info* next; int prev_ptr = sched_ctx.procs_index; int ptr = prev_ptr; + + if (!(__current->state & ~PS_RUNNING)) { + __current->state = PS_READY; + } + + check_sleepers(); + // round-robin scheduler +redo: do { ptr = (ptr + 1) % sched_ctx.ptable_len; next = &sched_ctx._procs[ptr]; - } while((next->state != PROC_STOPPED && next->state != PROC_CREATED) && ptr != prev_ptr); - + } while (next->state != PS_READY && ptr != prev_ptr); + sched_ctx.procs_index = ptr; - - __current->state = PROC_STOPPED; - next->state = PROC_RUNNING; - - __current = next; - cpu_lcr3(__current->page_table); + if (!can_schedule(next)) { + // 如果该进程不给予调度,则尝试重新选择 + goto redo; + } - apic_done_servicing(); + run(next); +} + +void +sched_yieldk() +{ + cpu_enable_interrupt(); + cpu_int(LUNAIX_SCHED); +} + +__DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds) +{ + if (!seconds) { + return 0; + } + + if (__current->sleep.wakeup_time) { + return (__current->sleep.wakeup_time - clock_systime()) / 1000U; + } + + __current->sleep.wakeup_time = clock_systime() + seconds * 1000; + llist_append(&sched_ctx._procs[0].sleep.sleepers, + &__current->sleep.sleepers); + + __current->intr_ctx.registers.eax = seconds; + __current->state = PS_BLOCKED; + schedule(); +} + +__DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds) +{ + time_t prev_ddl = __current->sleep.alarm_time; + time_t now = clock_systime(); + + __current->sleep.alarm_time = seconds ? now + seconds * 1000 : 0; - asm volatile ("pushl %0\n jmp soft_iret\n"::"r"(&__current->intr_ctx): "memory"); + if (llist_empty(&__current->sleep.sleepers)) { + llist_append(&sched_ctx._procs[0].sleep.sleepers, + &__current->sleep.sleepers); + } + + return prev_ddl ? (prev_ddl - now) / 1000 : 0; +} + +__DEFINE_LXSYSCALL1(void, exit, int, status) +{ + terminate_proc(status); + schedule(); +} + +__DEFINE_LXSYSCALL(void, yield) +{ + schedule(); +} + +pid_t +_wait(pid_t wpid, int* status, int options); + +__DEFINE_LXSYSCALL1(pid_t, wait, int*, status) +{ + return _wait(-1, status, 0); +} + +__DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options) +{ + return _wait(pid, status, options); } -pid_t alloc_pid() { +__DEFINE_LXSYSCALL(int, geterrno) +{ + return __current->k_status; +} + +pid_t +_wait(pid_t wpid, int* status, int options) +{ + pid_t cur = __current->pid; + int status_flags = 0; + struct proc_info *proc, *n; + if (llist_empty(&__current->children)) { + return -1; + } + + wpid = wpid ? wpid : -__current->pgid; +repeat: + llist_for_each(proc, n, &__current->children, siblings) + { + if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) { + if (proc->state == PS_TERMNAT && !options) { + status_flags |= PEXITTERM; + goto done; + } + if (proc->state == PS_READY && (options & WUNTRACED)) { + status_flags |= PEXITSTOP; + goto done; + } + } + } + if ((options & WNOHANG)) { + return 0; + } + // 放弃当前的运行机会 + sched_yieldk(); + goto repeat; + +done: + status_flags |= PEXITSIG * (proc->sig_inprogress != 0); + if (status) { + *status = proc->exit_code | status_flags; + } + return destroy_process(proc->pid); +} + +struct proc_info* +alloc_process() +{ pid_t i = 0; - for (; i < sched_ctx.ptable_len && sched_ctx._procs[i].state != PROC_DESTROY; i++); + for (; i < sched_ctx.ptable_len && sched_ctx._procs[i].state != PS_DESTROY; + i++) + ; if (i == MAX_PROCESS) { - __current->k_status = LXPROCFULL; - return -1; + panick("Panic in Ponyville shimmer!"); } - return i + 1; + + if (i == sched_ctx.ptable_len) { + sched_ctx.ptable_len++; + } + + struct proc_info* proc = &sched_ctx._procs[i]; + memset(proc, 0, sizeof(*proc)); + + proc->state = PS_CREATED; + proc->pid = i; + proc->created = clock_systime(); + proc->pgid = proc->pid; + proc->fdtable = vzalloc(sizeof(struct v_fdtable)); + + llist_init_head(&proc->mm.regions.head); + llist_init_head(&proc->children); + llist_init_head(&proc->grp_member); + llist_init_head(&proc->sleep.sleepers); + waitq_init(&proc->waitqueue); + + return proc; } -void push_process(struct proc_info* process) { - int index = process->pid - 1; - if (index < 0 || index > sched_ctx.ptable_len) { - __current->k_status = LXINVLDPID; +void +commit_process(struct proc_info* process) +{ + assert(process == &sched_ctx._procs[process->pid]); + + if (process->state != PS_CREATED) { + __current->k_status = EINVAL; return; } - - if (index == sched_ctx.ptable_len) { - sched_ctx.ptable_len++; + + // every process is the child of first process (pid=1) + if (!process->parent) { + process->parent = &sched_ctx._procs[1]; } - - process->parent = __current->pid; - process->state = PROC_CREATED; - sched_ctx._procs[index] = *process; + llist_append(&process->parent->children, &process->siblings); + + process->state = PS_READY; } -void destroy_process(pid_t pid) { - int index = pid - 1; - if (index < 0 || index > sched_ctx.ptable_len) { - __current->k_status = LXINVLDPID; +// from +extern void +__del_pagetable(pid_t pid, uintptr_t mount_point); + +pid_t +destroy_process(pid_t pid) +{ + int index = pid; + if (index <= 0 || index > sched_ctx.ptable_len) { + __current->k_status = EINVAL; return; } + struct proc_info* proc = &sched_ctx._procs[index]; + proc->state = PS_DESTROY; + llist_delete(&proc->siblings); + + for (size_t i = 0; i < VFS_MAX_FD; i++) { + struct v_fd* fd = proc->fdtable->fds[i]; + if (fd) + vfs_close(fd->file); + } + + vfree(proc->fdtable); + + struct mm_region *pos, *n; + llist_for_each(pos, n, &proc->mm.regions.head, head) + { + vfree(pos); + } - sched_ctx._procs[index].state = PROC_DESTROY; + vmm_mount_pd(PD_MOUNT_1, proc->page_table); - // TODO: recycle the physical pages used by page tables + __del_pagetable(pid, PD_MOUNT_1); + + vmm_unmount_pd(PD_MOUNT_1); + + return pid; } -void terminate_process(int exit_code) { - __current->state = PROC_TERMNAT; +void +terminate_proc(int exit_code) +{ + __current->state = PS_TERMNAT; __current->exit_code = exit_code; - schedule(); + __SIGSET(__current->parent->sig_pending, _SIGCHLD); } -struct proc_info* get_process(pid_t pid) { - int index = pid - 1; +struct proc_info* +get_process(pid_t pid) +{ + int index = pid; if (index < 0 || index > sched_ctx.ptable_len) { return NULL; } return &sched_ctx._procs[index]; +} + +int +orphaned_proc(pid_t pid) +{ + if (!pid) + return 0; + if (pid >= sched_ctx.ptable_len) + return 0; + struct proc_info* proc = &sched_ctx._procs[pid]; + struct proc_info* parent = proc->parent; + + // 如果其父进程的状态是terminated 或 destroy中的一种 + // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程 + return PROC_TERMINATED(parent->state) || parent->created > proc->created; } \ No newline at end of file