refactor: one more step towards arch-agnostic design
[lunaix-os.git] / lunaix-os / hal / ahci / ahci.c
1 /**
2  * @file ahci.c
3  * @author Lunaixsky (zelong56@gmail.com)
4  * @brief A software implementation of Serial ATA AHCI 1.3.1 Specification
5  * @version 0.1
6  * @date 2022-06-28
7  *
8  * @copyright Copyright (c) 2022
9  *
10  */
11 #include <hal/ahci/ahci.h>
12 #include <hal/ahci/hba.h>
13 #include <hal/ahci/sata.h>
14 #include <hal/ahci/scsi.h>
15 #include <hal/pci.h>
16
17 #include <sys/pci_hba.h>
18 #include <sys/port_io.h>
19
20 #include <klibc/string.h>
21 #include <lunaix/block.h>
22 #include <lunaix/isrm.h>
23 #include <lunaix/mm/mmio.h>
24 #include <lunaix/mm/pmm.h>
25 #include <lunaix/mm/valloc.h>
26 #include <lunaix/mm/vmm.h>
27 #include <lunaix/spike.h>
28 #include <lunaix/syslog.h>
29
30 #define HBA_FIS_SIZE 256
31 #define HBA_CLB_SIZE 1024
32
33 #define HBA_MY_IE (HBA_PxINTR_DHR | HBA_PxINTR_TFE | HBA_PxINTR_OF)
34
35 // #define DO_HBA_FULL_RESET
36
37 LOG_MODULE("AHCI")
38
39 DEFINE_LLIST(ahcis);
40
41 static char sata_ifs[][20] = { "Not detected",
42                                "SATA I (1.5Gbps)",
43                                "SATA II (3.0Gbps)",
44                                "SATA III (6.0Gbps)" };
45
46 extern void
47 ahci_fsexport(struct block_dev* bdev, void* fs_node);
48
49 extern void
50 __ahci_hba_isr(const isr_param* param);
51
52 extern void
53 __ahci_blkio_handler(struct blkio_req* req);
54
55 int
56 ahci_init_device(struct hba_port* port);
57
58 void
59 achi_register_ops(struct hba_port* port);
60
61 void
62 ahci_register_device(struct hba_device* hbadev);
63
64 void*
65 ahci_driver_init(struct pci_device* ahci_dev);
66
67 void
68 __hba_reset_port(hba_reg_t* port_reg)
69 {
70     // 根据:SATA-AHCI spec section 10.4.2 描述的端口重置流程
71     port_reg[HBA_RPxCMD] &= ~HBA_PxCMD_ST;
72     port_reg[HBA_RPxCMD] &= ~HBA_PxCMD_FRE;
73     int cnt = wait_until_expire(!(port_reg[HBA_RPxCMD] & HBA_PxCMD_CR), 500000);
74     if (cnt) {
75         return;
76     }
77     // 如果port未响应,则继续执行重置
78     port_reg[HBA_RPxSCTL] = (port_reg[HBA_RPxSCTL] & ~0xf) | 1;
79     port_delay(100000); // 等待至少一毫秒,差不多就行了
80     port_reg[HBA_RPxSCTL] &= ~0xf;
81 }
82
83 void*
84 ahci_driver_init(struct pci_device* ahci_dev)
85 {
86     struct pci_base_addr* bar6 = &ahci_dev->bar[5];
87     assert_msg(bar6->type & BAR_TYPE_MMIO, "AHCI: BAR#6 is not MMIO.");
88
89     pci_reg_t cmd = pci_read_cspace(ahci_dev->cspace_base, PCI_REG_STATUS_CMD);
90
91     // 禁用传统中断(因为我们使用MSI),启用MMIO访问,允许PCI设备间访问
92     cmd |= (PCI_RCMD_MM_ACCESS | PCI_RCMD_DISABLE_INTR | PCI_RCMD_BUS_MASTER);
93
94     pci_write_cspace(ahci_dev->cspace_base, PCI_REG_STATUS_CMD, cmd);
95
96     int iv = isrm_ivexalloc(__ahci_hba_isr);
97     pci_setup_msi(ahci_dev, iv);
98
99     struct ahci_driver* ahci_drv = vzalloc(sizeof(*ahci_drv));
100     struct ahci_hba* hba = &ahci_drv->hba;
101     ahci_drv->id = iv;
102
103     llist_append(&ahcis, &ahci_drv->ahci_drvs);
104
105     hba->base = (hba_reg_t*)ioremap(bar6->start, bar6->size);
106
107 #ifdef DO_HBA_FULL_RESET
108     // 重置HBA
109     hba->base[HBA_RGHC] |= HBA_RGHC_RESET;
110     wait_until(!(hba->base[HBA_RGHC] & HBA_RGHC_RESET));
111 #endif
112
113     // 启用AHCI工作模式,启用中断
114     hba->base[HBA_RGHC] |= HBA_RGHC_ACHI_ENABLE;
115     hba->base[HBA_RGHC] |= HBA_RGHC_INTR_ENABLE;
116
117     // As per section 3.1.1, this is 0 based value.
118     hba_reg_t cap = hba->base[HBA_RCAP];
119     hba_reg_t pmap = hba->base[HBA_RPI];
120
121     hba->ports_num = (cap & 0x1f) + 1;  // CAP.PI
122     hba->cmd_slots = (cap >> 8) & 0x1f; // CAP.NCS
123     hba->version = hba->base[HBA_RVER];
124     hba->ports_bmp = pmap;
125
126     /* ------ HBA端口配置 ------ */
127     ptr_t clb_pg_addr = 0, fis_pg_addr = 0;
128     ptr_t clb_pa = 0, fis_pa = 0;
129
130     for (size_t i = 0, fisp = 0, clbp = 0; i < 32;
131          i++, pmap >>= 1, fisp = (fisp + 1) % 16, clbp = (clbp + 1) % 4) {
132         if (!(pmap & 0x1)) {
133             continue;
134         }
135
136         struct hba_port* port =
137           (struct hba_port*)valloc(sizeof(struct hba_port));
138         hba_reg_t* port_regs =
139           (hba_reg_t*)(&hba->base[HBA_RPBASE + i * HBA_RPSIZE]);
140
141 #ifndef DO_HBA_FULL_RESET
142         __hba_reset_port(port_regs);
143 #endif
144
145         if (!clbp) {
146             // 每页最多4个命令队列
147             clb_pa = pmm_alloc_page(KERNEL_PID, PP_FGLOCKED);
148             clb_pg_addr = (ptr_t)ioremap(clb_pa, 0x1000);
149             memset((void*)clb_pg_addr, 0, 0x1000);
150         }
151         if (!fisp) {
152             // 每页最多16个FIS
153             fis_pa = pmm_alloc_page(KERNEL_PID, PP_FGLOCKED);
154             fis_pg_addr = (ptr_t)ioremap(fis_pa, 0x1000);
155             memset((void*)fis_pg_addr, 0, 0x1000);
156         }
157
158         /* 重定向CLB与FIS */
159         port_regs[HBA_RPxCLB] = clb_pa + clbp * HBA_CLB_SIZE;
160         port_regs[HBA_RPxFB] = fis_pa + fisp * HBA_FIS_SIZE;
161
162         *port = (struct hba_port){
163             .regs = port_regs,
164             .ssts = port_regs[HBA_RPxSSTS],
165             .cmdlst = (struct hba_cmdh*)(clb_pg_addr + clbp * HBA_CLB_SIZE),
166             .fis = (void*)(fis_pg_addr + fisp * HBA_FIS_SIZE),
167             .hba = hba
168         };
169
170         /* 初始化端口,并置于就绪状态 */
171         port_regs[HBA_RPxCI] = 0;
172
173         hba_clear_reg(port_regs[HBA_RPxSERR]);
174
175         hba->ports[i] = port;
176
177         if (!HBA_RPxSSTS_IF(port->ssts)) {
178             continue;
179         }
180
181         wait_until(!(port_regs[HBA_RPxCMD] & HBA_PxCMD_CR));
182         port_regs[HBA_RPxCMD] |= HBA_PxCMD_FRE;
183         port_regs[HBA_RPxCMD] |= HBA_PxCMD_ST;
184
185         if (!ahci_init_device(port)) {
186             kprintf(KERROR "init fail: 0x%x@p%d\n", port->regs[HBA_RPxSIG], i);
187             continue;
188         }
189
190         struct hba_device* hbadev = port->device;
191         kprintf(KINFO "sata%d: %s, blk_size=%d, blk=0..%d\n",
192                 i,
193                 hbadev->model,
194                 hbadev->block_size,
195                 (u32_t)hbadev->max_lba);
196
197         ahci_register_device(hbadev);
198     }
199
200     return ahci_drv;
201 }
202 EXPORT_PCI_DEVICE(pci_ahci, AHCI_HBA_CLASS, 0, 0, ahci_driver_init);
203
204 void
205 ahci_register_device(struct hba_device* hbadev)
206 {
207     struct block_dev* bdev =
208       block_alloc_dev(hbadev->model, hbadev, __ahci_blkio_handler);
209
210     bdev->end_lba = hbadev->max_lba;
211     bdev->blk_size = hbadev->block_size;
212
213     block_mount(bdev, ahci_fsexport);
214 }
215
216 int
217 __get_free_slot(struct hba_port* port)
218 {
219     hba_reg_t pxsact = port->regs[HBA_RPxSACT];
220     hba_reg_t pxci = port->regs[HBA_RPxCI];
221     hba_reg_t free_bmp = pxsact | pxci;
222     u32_t i = 0;
223     for (; i <= port->hba->cmd_slots && (free_bmp & 0x1); i++, free_bmp >>= 1)
224         ;
225     return i | -(i > port->hba->cmd_slots);
226 }
227
228 void
229 sata_create_fis(struct sata_reg_fis* cmd_fis,
230                 u8_t command,
231                 lba_t lba,
232                 u16_t sector_count)
233 {
234     cmd_fis->head.type = SATA_REG_FIS_H2D;
235     cmd_fis->head.options = SATA_REG_FIS_COMMAND;
236     cmd_fis->head.status_cmd = command;
237     cmd_fis->dev = 0;
238
239     cmd_fis->lba0 = SATA_LBA_COMPONENT(lba, 0);
240     cmd_fis->lba8 = SATA_LBA_COMPONENT(lba, 8);
241     cmd_fis->lba16 = SATA_LBA_COMPONENT(lba, 16);
242     cmd_fis->lba24 = SATA_LBA_COMPONENT(lba, 24);
243
244     cmd_fis->lba32 = SATA_LBA_COMPONENT(lba, 32);
245     cmd_fis->lba40 = SATA_LBA_COMPONENT(lba, 40);
246
247     cmd_fis->count = sector_count;
248 }
249
250 int
251 hba_bind_sbuf(struct hba_cmdh* cmdh, struct hba_cmdt* cmdt, struct membuf mbuf)
252 {
253     assert_msg(mbuf.size <= 0x400000U, "HBA: Buffer too big");
254     cmdh->prdt_len = 1;
255     cmdt->entries[0] =
256       (struct hba_prdte){ .data_base = vmm_v2p((ptr_t)mbuf.buffer),
257                           .byte_count = mbuf.size - 1 };
258
259     return 0;
260 }
261
262 int
263 hba_bind_vbuf(struct hba_cmdh* cmdh, struct hba_cmdt* cmdt, struct vecbuf* vbuf)
264 {
265     size_t i = 0;
266     struct vecbuf* pos = vbuf;
267
268     do {
269         assert_msg(i < HBA_MAX_PRDTE, "HBA: Too many PRDTEs");
270         assert_msg(pos->buf.size <= 0x400000U, "HBA: Buffer too big");
271
272         cmdt->entries[i++] =
273           (struct hba_prdte){ .data_base = vmm_v2p((ptr_t)pos->buf.buffer),
274                               .byte_count = pos->buf.size - 1 };
275         pos = list_entry(pos->components.next, struct vecbuf, components);
276     } while (pos != vbuf);
277
278     cmdh->prdt_len = i + 1;
279
280     return 0;
281 }
282
283 int
284 hba_prepare_cmd(struct hba_port* port,
285                 struct hba_cmdt** cmdt,
286                 struct hba_cmdh** cmdh)
287 {
288     int slot = __get_free_slot(port);
289     assert_msg(slot >= 0, "HBA: No free slot");
290
291     // 构建命令头(Command Header)和命令表(Command Table)
292     struct hba_cmdh* cmd_header = &port->cmdlst[slot];
293     struct hba_cmdt* cmd_table = vzalloc_dma(sizeof(struct hba_cmdt));
294
295     memset(cmd_header, 0, sizeof(*cmd_header));
296
297     // 将命令表挂到命令头上
298     cmd_header->cmd_table_base = vmm_v2p((ptr_t)cmd_table);
299     cmd_header->options =
300       HBA_CMDH_FIS_LEN(sizeof(struct sata_reg_fis)) | HBA_CMDH_CLR_BUSY;
301
302     *cmdh = cmd_header;
303     *cmdt = cmd_table;
304
305     return slot;
306 }
307
308 int
309 ahci_init_device(struct hba_port* port)
310 {
311     /* 发送ATA命令,参考:SATA AHCI Spec Rev.1.3.1, section 5.5 */
312     struct hba_cmdt* cmd_table;
313     struct hba_cmdh* cmd_header;
314
315     // mask DHR interrupt
316     port->regs[HBA_RPxIE] &= ~HBA_MY_IE;
317
318     // 预备DMA接收缓存,用于存放HBA传回的数据
319     u16_t* data_in = (u16_t*)valloc_dma(512);
320
321     int slot = hba_prepare_cmd(port, &cmd_table, &cmd_header);
322     hba_bind_sbuf(
323       cmd_header, cmd_table, (struct membuf){ .buffer = data_in, .size = 512 });
324
325     port->device = vzalloc(sizeof(struct hba_device));
326     port->device->port = port;
327     port->device->hba = port->hba;
328
329     // 在命令表中构建命令FIS
330     struct sata_reg_fis* cmd_fis = (struct sata_reg_fis*)cmd_table->command_fis;
331
332     // 根据设备类型使用合适的命令
333     if (port->regs[HBA_RPxSIG] == HBA_DEV_SIG_ATA) {
334         // ATA 一般为硬盘
335         sata_create_fis(cmd_fis, ATA_IDENTIFY_DEVICE, 0, 0);
336     } else {
337         // ATAPI 一般为光驱,软驱,或者磁带机
338         port->device->flags |= HBA_DEV_FATAPI;
339         sata_create_fis(cmd_fis, ATA_IDENTIFY_PAKCET_DEVICE, 0, 0);
340     }
341
342     if (!ahci_try_send(port, slot)) {
343         goto fail;
344     }
345
346     /*
347         等待数据到达内存
348         解析IDENTIFY DEVICE传回来的数据。
349           参考:
350             * ATA/ATAPI Command Set - 3 (ACS-3), Section 7.12.7
351     */
352     ahci_parse_dev_info(port->device, data_in);
353
354     if (!(port->device->flags & HBA_DEV_FATAPI)) {
355         goto done;
356     }
357
358     /*
359         注意:ATAPI设备是无法通过IDENTIFY PACKET DEVICE 获取容量信息的。
360         我们需要使用SCSI命令的READ_CAPACITY(16)进行获取。
361         步骤如下:
362             1. 因为ATAPI走的是SCSI,而AHCI对此专门进行了SATA的封装,
363                也就是通过SATA的PACKET命令对SCSI命令进行封装。所以我们
364                首先需要构建一个PACKET命令的FIS
365             2. 接着,在ACMD中构建命令READ_CAPACITY的CDB - 一种SCSI命令的封装
366             3. 然后把cmd_header->options的A位置位,表示这是一个送往ATAPI的命令。
367                 一点细节:
368                     1. HBA往底层SATA控制器发送PACKET FIS
369                     2. SATA控制器回复PIO Setup FIS
370                     3. HBA读入ACMD中的CDB,打包成Data FIS进行答复
371                     4. SATA控制器解包,拿到CDB,通过SCSI协议转发往ATAPI设备。
372                     5. ATAPI设备回复Return Parameter,SATA通过DMA Setup FIS
373                        发起DMA请求,HBA介入,将Return Parameter写入我们在PRDT
374                        里设置的data_in位置。
375             4. 最后照常等待HBA把结果写入data_in,然后直接解析就好了。
376           参考:
377             * ATA/ATAPI Command Set - 3 (ACS-3), Section 7.18
378             * SATA AHCI HBA Spec, Section 5.3.7
379             * SCSI Command Reference Manual, Section 3.26
380     */
381
382     sata_create_fis(cmd_fis, ATA_PACKET, 512 << 8, 0);
383
384     // for dev use 12 bytes cdb, READ_CAPACITY must use the 10 bytes variation.
385     if (port->device->cbd_size == SCSI_CDB12) {
386         struct scsi_cdb12* cdb12 = (struct scsi_cdb12*)cmd_table->atapi_cmd;
387         // ugly tricks to construct 10 byte cdb from 12 byte cdb
388         scsi_create_packet12(cdb12, SCSI_READ_CAPACITY_10, 0, 512 << 8);
389     } else {
390         struct scsi_cdb16* cdb16 = (struct scsi_cdb16*)cmd_table->atapi_cmd;
391         scsi_create_packet16(cdb16, SCSI_READ_CAPACITY_16, 0, 512);
392         cdb16->misc1 = 0x10; // service action
393     }
394
395     cmd_header->transferred_size = 0;
396     cmd_header->options |= HBA_CMDH_ATAPI;
397
398     if (!ahci_try_send(port, slot)) {
399         goto fail;
400     }
401
402     scsi_parse_capacity(port->device, (u32_t*)data_in);
403
404 done:
405     // reset interrupt status and unmask D2HR interrupt
406     port->regs[HBA_RPxIE] |= HBA_MY_IE;
407     achi_register_ops(port);
408
409     vfree_dma(data_in);
410     vfree_dma(cmd_table);
411
412     return 1;
413
414 fail:
415     port->regs[HBA_RPxIE] |= HBA_MY_IE;
416     vfree_dma(data_in);
417     vfree_dma(cmd_table);
418
419     return 0;
420 }
421
422 int
423 ahci_identify_device(struct hba_device* device)
424 {
425     // 用于重新识别设备(比如在热插拔的情况下)
426     vfree(device);
427     return ahci_init_device(device->port);
428 }
429
430 void
431 achi_register_ops(struct hba_port* port)
432 {
433     port->device->ops.identify = ahci_identify_device;
434     if (!(port->device->flags & HBA_DEV_FATAPI)) {
435         port->device->ops.submit = sata_submit;
436     } else {
437         port->device->ops.submit = scsi_submit;
438     }
439 }