1 #include <arch/x86/interrupts.h>
2 #include <arch/x86/tss.h>
7 #include <lunaix/mm/kalloc.h>
8 #include <lunaix/mm/pmm.h>
9 #include <lunaix/mm/vmm.h>
10 #include <lunaix/process.h>
11 #include <lunaix/sched.h>
12 #include <lunaix/signal.h>
13 #include <lunaix/spike.h>
14 #include <lunaix/status.h>
15 #include <lunaix/syscall.h>
16 #include <lunaix/syslog.h>
18 #define MAX_PROCESS 512
20 volatile struct proc_info* __current;
22 struct proc_info dummy;
24 struct scheduler sched_ctx;
31 size_t pg_size = ROUNDUP(sizeof(struct proc_info) * MAX_PROCESS, 0x1000);
33 for (size_t i = 0; i <= pg_size; i += 4096) {
34 uintptr_t pa = pmm_alloc_page(KERNEL_PID, PP_FGPERSIST);
36 PD_REFERENCED, PROC_START + i, pa, PG_PREM_RW, VMAP_NULL);
39 sched_ctx = (struct scheduler){ ._procs = (struct proc_info*)PROC_START,
45 run(struct proc_info* proc)
47 proc->state = PS_RUNNING;
50 将tss.esp0设置为上次调度前的esp值。
51 当处理信号时,上下文信息是不会恢复的,而是保存在用户栈中,然后直接跳转进位于用户空间的sig_wrapper进行
52 信号的处理。当用户自定义的信号处理函数返回时,sigreturn的系统调用才开始进行上下文的恢复(或者说是进行
54 由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
55 这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
57 tss_update_esp(proc->intr_ctx.registers.esp);
59 apic_done_servicing();
61 asm volatile("pushl %0\n"
62 "jmp switch_to\n" ::"r"(proc)); // kernel/asm/x86/interrupt.S
66 can_schedule(struct proc_info* proc)
68 if (__SIGTEST(proc->sig_pending, _SIGCONT)) {
69 __SIGCLEAR(proc->sig_pending, _SIGSTOP);
70 } else if (__SIGTEST(proc->sig_pending, _SIGSTOP)) {
71 // 如果进程受到SIGSTOP,则该进程不给予调度。
81 struct proc_info* leader = &sched_ctx._procs[0];
82 struct proc_info *pos, *n;
83 time_t now = clock_systime();
84 llist_for_each(pos, n, &leader->sleep.sleepers, sleep.sleepers)
86 if (PROC_TERMINATED(pos->state)) {
90 time_t wtime = pos->sleep.wakeup_time;
91 time_t atime = pos->sleep.alarm_time;
93 if (wtime && now >= wtime) {
94 pos->sleep.wakeup_time = 0;
95 pos->state = PS_STOPPED;
98 if (atime && now >= atime) {
99 pos->sleep.alarm_time = 0;
100 __SIGSET(pos->sig_pending, _SIGALRM);
103 if (!wtime && !atime) {
105 llist_delete(&pos->sleep.sleepers);
113 if (!sched_ctx.ptable_len) {
117 // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序……
118 cpu_disable_interrupt();
119 struct proc_info* next;
120 int prev_ptr = sched_ctx.procs_index;
123 if (!(__current->state & ~PS_RUNNING)) {
124 __current->state = PS_STOPPED;
129 // round-robin scheduler
132 ptr = (ptr + 1) % sched_ctx.ptable_len;
133 next = &sched_ctx._procs[ptr];
134 } while (next->state != PS_STOPPED && ptr != prev_ptr);
136 sched_ctx.procs_index = ptr;
138 if (!can_schedule(next)) {
139 // 如果该进程不给予调度,则尝试重新选择
146 __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
152 if (__current->sleep.wakeup_time) {
153 return (__current->sleep.wakeup_time - clock_systime()) / 1000U;
156 __current->sleep.wakeup_time = clock_systime() + seconds * 1000;
157 llist_append(&sched_ctx._procs[0].sleep.sleepers,
158 &__current->sleep.sleepers);
160 __current->intr_ctx.registers.eax = seconds;
161 __current->state = PS_BLOCKED;
165 __DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
167 time_t prev_ddl = __current->sleep.alarm_time;
168 time_t now = clock_systime();
170 __current->sleep.alarm_time = seconds ? now + seconds * 1000 : 0;
172 if (llist_empty(&__current->sleep.sleepers)) {
173 llist_append(&sched_ctx._procs[0].sleep.sleepers,
174 &__current->sleep.sleepers);
177 return prev_ddl ? (prev_ddl - now) / 1000 : 0;
180 __DEFINE_LXSYSCALL1(void, exit, int, status)
182 terminate_proc(status);
186 __DEFINE_LXSYSCALL(void, yield)
192 _wait(pid_t wpid, int* status, int options);
194 __DEFINE_LXSYSCALL1(pid_t, wait, int*, status)
196 return _wait(-1, status, 0);
199 __DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options)
201 return _wait(pid, status, options);
205 _wait(pid_t wpid, int* status, int options)
207 pid_t cur = __current->pid;
208 int status_flags = 0;
209 struct proc_info *proc, *n;
210 if (llist_empty(&__current->children)) {
214 wpid = wpid ? wpid : -__current->pgid;
215 cpu_enable_interrupt();
217 llist_for_each(proc, n, &__current->children, siblings)
219 if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) {
220 if (proc->state == PS_TERMNAT && !options) {
221 status_flags |= PEXITTERM;
224 if (proc->state == PS_STOPPED && (options & WUNTRACED)) {
225 status_flags |= PEXITSTOP;
230 if ((options & WNOHANG)) {
238 cpu_disable_interrupt();
239 status_flags |= PEXITSIG * (proc->sig_inprogress != 0);
240 *status = proc->exit_code | status_flags;
241 return destroy_process(proc->pid);
248 for (; i < sched_ctx.ptable_len && sched_ctx._procs[i].state != PS_DESTROY;
252 if (i == MAX_PROCESS) {
253 panick("Panic in Ponyville shimmer!");
256 if (i == sched_ctx.ptable_len) {
257 sched_ctx.ptable_len++;
260 struct proc_info* proc = &sched_ctx._procs[i];
261 memset(proc, 0, sizeof(*proc));
263 proc->state = PS_CREATED;
265 proc->created = clock_systime();
266 proc->pgid = proc->pid;
268 llist_init_head(&proc->mm.regions);
269 llist_init_head(&proc->children);
270 llist_init_head(&proc->grp_member);
271 llist_init_head(&proc->sleep.sleepers);
277 commit_process(struct proc_info* process)
279 assert(process == &sched_ctx._procs[process->pid]);
281 if (process->state != PS_CREATED) {
282 __current->k_status = LXINVL;
286 // every process is the child of first process (pid=1)
287 if (!process->parent) {
288 process->parent = &sched_ctx._procs[1];
291 llist_append(&process->parent->children, &process->siblings);
293 process->state = PS_STOPPED;
296 // from <kernel/process.c>
298 __del_pagetable(pid_t pid, uintptr_t mount_point);
301 destroy_process(pid_t pid)
304 if (index <= 0 || index > sched_ctx.ptable_len) {
305 __current->k_status = LXINVLDPID;
308 struct proc_info* proc = &sched_ctx._procs[index];
309 proc->state = PS_DESTROY;
310 llist_delete(&proc->siblings);
312 struct mm_region *pos, *n;
313 llist_for_each(pos, n, &proc->mm.regions.head, head)
318 vmm_mount_pd(PD_MOUNT_1, proc->page_table);
320 __del_pagetable(pid, PD_MOUNT_1);
322 vmm_unmount_pd(PD_MOUNT_1);
328 terminate_proc(int exit_code)
330 __current->state = PS_TERMNAT;
331 __current->exit_code = exit_code;
333 __SIGSET(__current->parent->sig_pending, _SIGCHLD);
337 get_process(pid_t pid)
340 if (index < 0 || index > sched_ctx.ptable_len) {
343 return &sched_ctx._procs[index];
347 orphaned_proc(pid_t pid)
351 if (pid >= sched_ctx.ptable_len)
353 struct proc_info* proc = &sched_ctx._procs[pid];
354 struct proc_info* parent = proc->parent;
356 // 如果其父进程的状态是terminated 或 destroy中的一种
357 // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
358 return PROC_TERMINATED(parent->state) || parent->created > proc->created;