1 #include <arch/x86/interrupts.h>
2 #include <arch/x86/tss.h>
7 #include <lunaix/mm/kalloc.h>
8 #include <lunaix/mm/pmm.h>
9 #include <lunaix/mm/vmm.h>
10 #include <lunaix/process.h>
11 #include <lunaix/sched.h>
12 #include <lunaix/signal.h>
13 #include <lunaix/spike.h>
14 #include <lunaix/status.h>
15 #include <lunaix/syscall.h>
16 #include <lunaix/syslog.h>
18 #define MAX_PROCESS 512
20 volatile struct proc_info* __current;
22 struct proc_info dummy;
24 struct scheduler sched_ctx;
31 size_t pg_size = ROUNDUP(sizeof(struct proc_info) * MAX_PROCESS, 0x1000);
33 for (size_t i = 0; i <= pg_size; i += 4096) {
34 uintptr_t pa = pmm_alloc_page(KERNEL_PID, PP_FGPERSIST);
36 PD_REFERENCED, PROC_START + i, pa, PG_PREM_RW, VMAP_NULL);
39 sched_ctx = (struct scheduler){ ._procs = (struct proc_info*)PROC_START,
45 run(struct proc_info* proc)
47 if (!(__current->state & ~PROC_RUNNING)) {
48 __current->state = PROC_STOPPED;
50 proc->state = PROC_RUNNING;
53 将tss.esp0设置为上次调度前的esp值。
54 当处理信号时,上下文信息是不会恢复的,而是保存在用户栈中,然后直接跳转进位于用户空间的sig_wrapper进行
55 信号的处理。当用户自定义的信号处理函数返回时,sigreturn的系统调用才开始进行上下文的恢复(或者说是进行
57 由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
58 这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
60 tss_update_esp(proc->intr_ctx.registers.esp);
62 apic_done_servicing();
64 asm volatile("pushl %0\n"
65 "jmp switch_to\n" ::"r"(proc)); // kernel/asm/x86/interrupt.S
71 if (!sched_ctx.ptable_len) {
75 // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序……
76 cpu_disable_interrupt();
77 struct proc_info* next;
78 int prev_ptr = sched_ctx.procs_index;
80 // round-robin scheduler
82 ptr = (ptr + 1) % sched_ctx.ptable_len;
83 next = &sched_ctx._procs[ptr];
84 } while (next->state != PROC_STOPPED && ptr != prev_ptr);
86 sched_ctx.procs_index = ptr;
92 proc_timer_callback(struct proc_info* proc)
95 proc->state = PROC_STOPPED;
98 __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
100 // FIXME: sleep的实现或许需要改一下。专门绑一个计时器好像没有必要……
105 if (__current->timer) {
106 return __current->timer->counter / timer_context()->running_frequency;
109 struct lx_timer* timer =
110 timer_run_second(seconds, proc_timer_callback, __current, 0);
111 __current->timer = timer;
112 __current->intr_ctx.registers.eax = seconds;
113 __current->state = PROC_BLOCKED;
117 __DEFINE_LXSYSCALL1(void, exit, int, status)
119 terminate_proc(status);
122 __DEFINE_LXSYSCALL(void, yield)
128 _wait(pid_t wpid, int* status, int options);
130 __DEFINE_LXSYSCALL1(pid_t, wait, int*, status)
132 return _wait(-1, status, 0);
135 __DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options)
137 return _wait(pid, status, options);
141 _wait(pid_t wpid, int* status, int options)
143 pid_t cur = __current->pid;
144 int status_flags = 0;
145 struct proc_info *proc, *n;
146 if (llist_empty(&__current->children)) {
150 wpid = wpid ? wpid : -__current->pgid;
151 cpu_enable_interrupt();
153 llist_for_each(proc, n, &__current->children, siblings)
155 if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) {
156 if (proc->state == PROC_TERMNAT && !options) {
157 status_flags |= PROCTERM;
160 if (proc->state == PROC_STOPPED && (options & WUNTRACED)) {
161 status_flags |= PROCSTOP;
166 if ((options & WNOHANG)) {
174 cpu_disable_interrupt();
175 *status = (proc->exit_code & 0xffff) | status_flags;
176 return destroy_process(proc->pid);
184 i < sched_ctx.ptable_len && sched_ctx._procs[i].state != PROC_DESTROY;
188 if (i == MAX_PROCESS) {
189 panick("Panic in Ponyville shimmer!");
192 if (i == sched_ctx.ptable_len) {
193 sched_ctx.ptable_len++;
196 struct proc_info* proc = &sched_ctx._procs[i];
197 memset(proc, 0, sizeof(*proc));
199 proc->state = PROC_CREATED;
201 proc->created = clock_systime();
202 proc->pgid = proc->pid;
204 llist_init_head(&proc->mm.regions);
205 llist_init_head(&proc->children);
206 llist_init_head(&proc->grp_member);
212 commit_process(struct proc_info* process)
214 assert(process == &sched_ctx._procs[process->pid]);
216 if (process->state != PROC_CREATED) {
217 __current->k_status = LXINVL;
221 // every process is the child of first process (pid=1)
222 if (process->parent) {
223 llist_append(&process->parent->children, &process->siblings);
225 process->parent = &sched_ctx._procs[0];
228 process->state = PROC_STOPPED;
231 // from <kernel/process.c>
233 __del_pagetable(pid_t pid, uintptr_t mount_point);
236 destroy_process(pid_t pid)
239 if (index <= 0 || index > sched_ctx.ptable_len) {
240 __current->k_status = LXINVLDPID;
243 struct proc_info* proc = &sched_ctx._procs[index];
244 proc->state = PROC_DESTROY;
245 llist_delete(&proc->siblings);
247 struct mm_region *pos, *n;
248 llist_for_each(pos, n, &proc->mm.regions.head, head)
253 vmm_mount_pd(PD_MOUNT_1, proc->page_table);
255 __del_pagetable(pid, PD_MOUNT_1);
257 vmm_unmount_pd(PD_MOUNT_1);
263 terminate_proc(int exit_code)
265 __current->state = PROC_TERMNAT;
266 __current->exit_code = exit_code;
268 __SET_SIGNAL(__current->parent->sig_pending, _SIGCHLD);
274 get_process(pid_t pid)
277 if (index < 0 || index > sched_ctx.ptable_len) {
280 return &sched_ctx._procs[index];
284 orphaned_proc(pid_t pid)
288 if (pid >= sched_ctx.ptable_len)
290 struct proc_info* proc = &sched_ctx._procs[pid];
291 struct proc_info* parent = proc->parent;
293 // 如果其父进程的状态是terminated 或 destroy中的一种
294 // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
295 return (parent->state & PROC_TERMMASK) || parent->created > proc->created;