1 #include <lunaix/peripheral/ps2kbd.h>
2 #include <lunaix/clock.h>
3 #include <lunaix/timer.h>
4 #include <lunaix/common.h>
5 #include <lunaix/syslog.h>
6 #include <hal/acpi/acpi.h>
7 #include <hal/ioapic.h>
10 #include <arch/x86/interrupts.h>
11 #include <klibc/string.h>
15 #define PS2_DEV_CMD_MAX_ATTEMPTS 5
19 static struct ps2_cmd_queue cmd_q;
20 static struct ps2_key_buffer key_buf;
21 static struct ps2_kbd_state kbd_state;
23 #define KEY_NUM(x) (x + 0x30)
24 #define KEY_NPAD(x) ON_KEYPAD(KEY_NUM(x))
26 // 我们使用 Scancode Set 2
29 static kbd_keycode_t scancode_set2[] = {
30 0, KEY_F9, 0, KEY_F5, KEY_F3, KEY_F1, KEY_F2, KEY_F12, 0, KEY_F10, KEY_F8, KEY_F6,
31 KEY_F4, KEY_HTAB, '`', 0, 0, KEY_LALT, KEY_LSHIFT, 0, KEY_LCTRL, 'q', KEY_NUM(1),
32 0, 0, 0, 'z', 's', 'a', 'w', KEY_NUM(2), 0, 0, 'c', 'x', 'd', 'e', KEY_NUM(4), KEY_NUM(3),
33 0, 0, KEY_SPACE, 'v', 'f', 't', 'r', KEY_NUM(5),
34 0, 0, 'n', 'b', 'h', 'g', 'y', KEY_NUM(6), 0, 0, 0, 'm', 'j', 'u', KEY_NUM(7), KEY_NUM(8),
35 0, 0, ',', 'k', 'i', 'o', KEY_NUM(0), KEY_NUM(9), 0, 0, '.', '/', 'l', ';', 'p', '-', 0, 0,
36 0, '\'', 0, '[', '=', 0, 0, KEY_CAPSLK, KEY_RSHIFT, KEY_LF, ']', 0, '\\', 0, 0, 0, 0, 0, 0, 0,
37 0, KEY_BS, 0, 0, KEY_NPAD(1), 0, KEY_NPAD(4), KEY_NPAD(7), 0, 0, 0, KEY_NPAD(0), ON_KEYPAD('.'),
38 KEY_NPAD(2), KEY_NPAD(5), KEY_NPAD(6), KEY_NPAD(8), KEY_ESC, KEY_NUMSLK, KEY_F11, ON_KEYPAD('+'),
39 KEY_NPAD(3), ON_KEYPAD('-'), ON_KEYPAD('*'), KEY_NPAD(9), KEY_SCRLLK, 0, 0, 0, 0, KEY_F7
42 // 一些特殊的键码(以 0xe0 位前缀的)
43 static kbd_keycode_t scancode_set2_ex[] = {
44 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KEY_RALT, 0, 0,
45 KEY_RCTRL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
46 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
47 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ON_KEYPAD('/'), 0, 0, 0, 0, 0, 0, 0, 0,
48 0, 0, 0, 0, 0, 0, 0, ON_KEYPAD(KEY_LF), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
49 KEY_END, 0, KEY_LEFT, KEY_HOME,
50 0, 0, 0, KEY_INSERT, KEY_DELETE, KEY_DOWN, 0, KEY_RIGHT, KEY_UP, 0, 0,
51 0, 0, KEY_PG_DOWN, 0, 0, KEY_PG_UP
54 // 用于处理 Shift+<key> 的情况
55 static kbd_keycode_t scancode_set2_shift[] = {
56 0, KEY_F9, 0, KEY_F5, KEY_F3, KEY_F1, KEY_F2, KEY_F12, 0, KEY_F10, KEY_F8, KEY_F6,
57 KEY_F4, KEY_HTAB, '~', 0, 0, KEY_LALT, KEY_LSHIFT, 0, KEY_LCTRL, 'Q', '!',
58 0, 0, 0, 'Z', 'S', 'A', 'W', '@', 0, 0, 'C', 'X', 'D', 'E', '$', '#',
59 0, 0, KEY_SPACE, 'V', 'F', 'T', 'R', '%',
60 0, 0, 'N', 'B', 'H', 'G', 'Y', '^', 0, 0, 0, 'M', 'J', 'U', '&', '*',
61 0, 0, '<', 'K', 'I', 'O', ')', '(', 0, 0, '>', '?', 'L', ':', 'P', '_', 0, 0,
62 0, '"', 0, '{', '+', 0, 0, KEY_CAPSLK, KEY_RSHIFT, KEY_LF, '}', 0, '|', 0, 0, 0, 0, 0, 0, 0,
63 0, KEY_BS, 0, 0, KEY_NPAD(1), 0, KEY_NPAD(4), KEY_NPAD(7), 0, 0, 0, KEY_NPAD(0), ON_KEYPAD('.'),
64 KEY_NPAD(2), KEY_NPAD(5), KEY_NPAD(6), KEY_NPAD(8), KEY_ESC, KEY_NUMSLK, KEY_F11, ON_KEYPAD('+'),
65 KEY_NPAD(3), ON_KEYPAD('-'), ON_KEYPAD('*'), KEY_SCRLLK, 0, 0, 0, 0, KEY_F7
69 #define KBD_STATE_KWAIT 0x00
70 #define KBD_STATE_KSPECIAL 0x01
71 #define KBD_STATE_KRELEASED 0x02
72 #define KBD_STATE_CMDPROCS 0x40
74 #define KBD_ENABLE_SPIRQ_FIX
77 void intr_ps2_kbd_handler(const isr_param* param);
78 static struct kdb_keyinfo_pkt* ps2_keybuffer_next_write();
80 void ps2_device_post_cmd(char cmd, char arg) {
81 mutex_lock(&cmd_q.mutex);
82 int index = (cmd_q.queue_ptr + cmd_q.queue_len) % PS2_CMD_QUEUE_SIZE;
83 if (index == cmd_q.queue_ptr && cmd_q.queue_len) {
85 mutex_unlock(&cmd_q.mutex);
89 struct ps2_cmd *container = &cmd_q.cmd_queue[index];
95 mutex_unlock(&cmd_q.mutex);
100 memset(&cmd_q, 0, sizeof(cmd_q));
101 memset(&key_buf, 0, sizeof(key_buf));
102 memset(&kbd_state, 0, sizeof(kbd_state));
104 mutex_init(&cmd_q.mutex);
105 mutex_init(&key_buf.mutex);
108 kbd_state.translation_table = scancode_set2;
109 kbd_state.state = KBD_STATE_KWAIT;
111 acpi_context* acpi_ctx = acpi_get_context();
112 if (acpi_ctx->fadt.header.rev > 1) {
114 * 只有当前ACPI版本大于1时,我们才使用FADT的IAPC_BOOT_ARCH去判断8042是否存在。
115 * 这是一个坑,在ACPI v1中,这个字段是reserved!而这及至ACPI v2才出现。
116 * 需要注意:Bochs 和 QEMU 使用的是ACPI v1,而非 v2 (virtualbox好像是v4)
118 * 请看Bochs的bios源码(QEMU的BIOS其实是照抄bochs的,所以也是一个德行。。):
119 * https://bochs.sourceforge.io/cgi-bin/lxr/source/bios/rombios32.c#L1314
121 if (!(acpi_ctx->fadt.boot_arch & IAPC_ARCH_8042)) {
122 kprintf(KERROR "No PS/2 controller detected.\n");
123 // FUTURE: Some alternative fallback on this? Check PCI bus for USB controller instead?
128 kprintf(KWARN "Outdated FADT used, assuming 8042 always exist.\n");
133 cpu_disable_interrupt();
136 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_PORT1_DISABLE, PS2_NO_ARG);
137 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_PORT2_DISABLE, PS2_NO_ARG);
140 io_inb(PS2_PORT_ENC_DATA);
143 // 3、屏蔽所有PS/2设备(端口1&2)IRQ,并且禁用键盘键码转换功能
144 result = ps2_issue_cmd(PS2_CMD_READ_CFG, PS2_NO_ARG);
145 result = result & ~(PS2_CFG_P1INT | PS2_CFG_P2INT | PS2_CFG_TRANSLATION);
146 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_WRITE_CFG, result);
149 result = ps2_issue_cmd(PS2_CMD_SELFTEST, PS2_NO_ARG);
150 if (result != PS2_RESULT_TEST_OK) {
151 kprintf(KERROR "Controller self-test failed.");
155 // 5、设备自检(端口1自检,通常是我们的键盘)
156 result = ps2_issue_cmd(PS2_CMD_SELFTEST_PORT1, PS2_NO_ARG);
158 kprintf(KERROR "Interface test on port 1 failed.");
162 // 6、开启位于端口1的 IRQ,并启用端口1。不用理会端口2,那儿一般是鼠标。
163 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_PORT1_ENABLE, PS2_NO_ARG);
164 result = ps2_issue_cmd(PS2_CMD_READ_CFG, PS2_NO_ARG);
165 result = result | PS2_CFG_P1INT;
166 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_WRITE_CFG, result);
168 // 至此,PS/2控制器和设备已完成初始化,可以正常使用。
170 // 将我们的键盘驱动挂载到第204号中断上(已由IOAPIC映射至IRQ#1),
171 intr_subscribe(PC_KBD_IV, intr_ps2_kbd_handler);
173 // 搞一个计时器,将我们的 ps2_process_cmd 挂上去。每隔5毫秒执行排在队头的命令。
174 // 为什么只执行队头的命令,而不是全部的命令?
175 // 因为我们需要保证isr尽量的简短,运行起来快速。而发送这些命令非常的耗时。
176 timer_run_ms(5, ps2_process_cmd, NULL, TIMER_MODE_PERIODIC);
179 * 一切准备就绪后,我们才教ioapic去启用IRQ#1。
180 * 至于为什么要在这里,原因是:初始化所使用的一些指令可能会导致IRQ#1的触发(因为返回码),或者是一些什么
181 * 情况导致IRQ#1的误触发(可能是未初始化导致IRQ#1线上不稳定)。于是这些IRQ#1会堆积在APIC的队列里(因为此时我们正在
182 * 初始化8042,屏蔽了所有中断,IF=0)。
183 * 当sti后,这些堆积的中断会紧跟着递送进CPU里,导致我们的键盘handler误认为由按键按下,从而将这个毫无意义的数值加入
186 * 所以,保险的方法是:在初始化后才去设置ioapic,这样一来我们就能有一个稳定的IRQ#1以放心使用。
188 uint8_t irq_kbd = ioapic_get_irq(acpi_ctx, PC_AT_IRQ_KBD);
189 ioapic_redirect(irq_kbd, PC_KBD_IV, 0, IOAPIC_DELMOD_FIXED);
192 cpu_enable_interrupt();
195 void ps2_process_cmd(void* arg) {
197 * 检查锁是否已被启用,如果启用,则表明该timer中断发生时,某个指令正在入队。
198 * 如果是这种情况则跳过,留到下一轮再尝试处理。
199 * 注意,这里其实是ISR的一部分(timer中断),对于单核CPU来说,ISR等同于单个的原子操作。
200 * (因为EFLAGS.IF=0,所有可屏蔽中断被屏蔽。对于NMI的情况,那么就直接算是triple fault了,所以也没有讨论的意义)
201 * 所以,假若我们遵从互斥锁的严格定义(即这里需要阻塞),那么中断将会被阻塞,进而造成死锁。
203 * 会不会产生指令堆积?不会,因为指令发送的频率远远低于指令队列清空的频率。在目前,我们发送的唯一指令
204 * 就只是用来开关键盘上的LED灯(如CAPSLOCK)。
206 if (mutex_on_hold(&cmd_q.mutex) || !cmd_q.queue_len) {
211 struct ps2_cmd *pending_cmd = &cmd_q.cmd_queue[cmd_q.queue_ptr];
215 // 尝试将命令发送至PS/2键盘(通过PS/2控制器)
216 // 如果不成功(0x60 IO口返回 0xfe,即 NAK i.e. Resend)
219 result = ps2_issue_dev_cmd(pending_cmd->cmd, pending_cmd->arg);
220 #ifdef KBD_ENABLE_SPIRQ_FIX
221 kbd_state.state += KBD_STATE_CMDPROCS;
224 } while(result == PS2_RESULT_NAK && attempts < PS2_DEV_CMD_MAX_ATTEMPTS);
226 // XXX: 是否需要处理不成功的指令?
228 cmd_q.queue_ptr = (cmd_q.queue_ptr + 1) % PS2_CMD_QUEUE_SIZE;
232 void kbd_buffer_key_event(kbd_keycode_t key, uint8_t scancode, kbd_kstate_t state) {
234 forgive me on these ugly bit-level tricks,
235 I really hate doing branching on these "fliping switch" things
237 if (key == KEY_CAPSLK) {
238 kbd_state.key_state ^= KBD_KEY_FCAPSLKED & -state;
239 } else if (key == KEY_NUMSLK) {
240 kbd_state.key_state ^= KBD_KEY_FNUMBLKED & -state;
241 } else if (key == KEY_SCRLLK) {
242 kbd_state.key_state ^= KBD_KEY_FSCRLLKED & -state;
244 if ((key & MODIFR)) {
245 kbd_kstate_t tmp = (KBD_KEY_FLSHIFT_HELD << (key & 0x00ff));
246 kbd_state.key_state = (kbd_state.key_state & ~tmp) | (tmp & -state);
248 else if (!(key & 0xff00) && (kbd_state.key_state & (KBD_KEY_FLSHIFT_HELD | KBD_KEY_FRSHIFT_HELD))) {
249 key = scancode_set2_shift[scancode];
251 state = state | kbd_state.key_state;
252 key = key & (0xffdf | -('a' > key || key > 'z' || !(state & KBD_KEY_FCAPSLKED)));
254 if (!mutex_on_hold(&key_buf.mutex)) {
255 struct kdb_keyinfo_pkt* keyevent_pkt = ps2_keybuffer_next_write();
256 *keyevent_pkt = (struct kdb_keyinfo_pkt) {
258 .scancode = scancode,
260 .timestamp = clock_systime()
267 if (state & KBD_KEY_FPRESSED) {
268 // Ooops, this guy generates irq!
269 ps2_device_post_cmd(PS2_KBD_CMD_SETLED, (kbd_state.key_state >> 1) & 0x00ff);
273 void intr_ps2_kbd_handler(const isr_param* param) {
275 // This is important! Don't believe me? try comment it out and run on Bochs!
276 while (!(io_inb(PS2_PORT_CTRL_STATUS) & PS2_STATUS_OFULL));
278 // I know you are tempting to move this chunk after the keyboard state check.
279 // But DO NOT. This chunk is in right place and right order. Moving it at your own risk
280 // This is to ensure we've cleared the output buffer everytime, so it won't pile up across irqs.
281 uint8_t scancode = io_inb(PS2_PORT_ENC_DATA);
285 * 判断键盘是否处在指令发送状态,防止误触发。(伪输入中断)
286 * 这是因为我们需要向ps/2设备发送指令(比如控制led灯),而指令会有返回码。
287 * 这就会有可能导致ps/2控制器在受到我们的命令后(在ps2_process_cmd中),
288 * 产生IRQ#1中断(虽然说这种情况取决于底层BIOS实现,但还是会发生,比如QEMU和bochs)。
289 * 所以这就是说,当IRQ#1中断产生时,我们的CPU正处在另一个ISR中。这样就会导致所有的外部中断被缓存在APIC内部的
290 * FIFO队列里,进行排队等待(APIC长度为二的队列 {IRR, TMR};参考 Intel Manual Vol.3A 10.8.4)
291 * 那么当ps2_process_cmd执行完后(内嵌在#APIC_TIMER_IV),CPU返回EOI给APIC,APIC紧接着将排在队里的IRQ#1发送给CPU
292 * 造成误触发。也就是说,我们此时读入的scancode实则上是上一个指令的返回代码。
295 * 但是这种方法有个问题,那就是,假若我们的某一个命令失败了一次,ps/2给出0xfe,我们重传,ps/2收到指令并给出0xfa。
296 * 那么这样一来,将会由两个连续的IRQ#1产生。而APIC是最多可以缓存两个IRQ,于是我们就会漏掉一个IRQ,依然会误触发。
301 * + 这种累加掩码的操作是基于只有一号IRQ产生的中断的假设,万一中间夹杂了别的中断?Race Condition!
302 * + 不很稳定x1,假如连续4次发送失败,那么就会导致累加的掩码上溢出,从而导致下述判断失败。
304 #ifdef KBD_ENABLE_SPIRQ_FIX
305 if ((kbd_state.state & 0xc0)) {
306 kbd_state.state -= KBD_STATE_CMDPROCS;
313 kprintf(KDEBUG "%x\n", scancode & 0xff);
316 switch (kbd_state.state)
318 case KBD_STATE_KWAIT:
319 if (scancode == 0xf0) { // release code
320 kbd_state.state = KBD_STATE_KRELEASED;
321 } else if (scancode == 0xe0) {
322 kbd_state.state = KBD_STATE_KSPECIAL;
323 kbd_state.translation_table = scancode_set2_ex;
325 key = kbd_state.translation_table[scancode];
326 kbd_buffer_key_event(key, scancode, KBD_KEY_FPRESSED);
329 case KBD_STATE_KSPECIAL:
330 if (scancode == 0xf0) { //release code
331 kbd_state.state = KBD_STATE_KRELEASED;
333 key = kbd_state.translation_table[scancode];
334 kbd_buffer_key_event(key, scancode, KBD_KEY_FPRESSED);
336 kbd_state.state = KBD_STATE_KWAIT;
337 kbd_state.translation_table = scancode_set2;
340 case KBD_STATE_KRELEASED:
341 key = kbd_state.translation_table[scancode];
342 kbd_buffer_key_event(key, scancode, KBD_KEY_FRELEASED);
344 // reset the translation table to scancode_set2
345 kbd_state.state = KBD_STATE_KWAIT;
346 kbd_state.translation_table = scancode_set2;
354 static uint8_t ps2_issue_cmd(char cmd, uint16_t arg) {
355 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, cmd, arg);
357 // 等待PS/2控制器返回。通过轮询(polling)状态寄存器的 bit 0
358 // 如置位,则表明返回代码此时就在 0x60 IO口上等待读取。
359 while(!(io_inb(PS2_PORT_CTRL_STATUS) & PS2_STATUS_OFULL));
361 return io_inb(PS2_PORT_ENC_CMDREG);
364 static void ps2_post_cmd(uint8_t port, char cmd, uint16_t arg) {
365 // 等待PS/2输入缓冲区清空,这样我们才可以写入命令
366 while(io_inb(PS2_PORT_CTRL_STATUS) & PS2_STATUS_IFULL);
371 if (!(arg & PS2_NO_ARG)) {
373 io_outb(PS2_PORT_ENC_CMDREG, (uint8_t)(arg & 0x00ff));
378 static uint8_t ps2_issue_dev_cmd(char cmd, uint16_t arg) {
379 ps2_post_cmd(PS2_PORT_ENC_CMDREG, cmd, arg);
381 // 等待PS/2控制器返回。通过轮询(polling)状态寄存器的 bit 0
382 // 如置位,则表明返回代码此时就在 0x60 IO口上等待读取。
383 while(!(io_inb(PS2_PORT_CTRL_STATUS) & PS2_STATUS_OFULL));
385 return io_inb(PS2_PORT_ENC_CMDREG);
388 int kbd_recv_key(struct kdb_keyinfo_pkt* key_event) {
389 if (!key_buf.buffered_len) {
392 mutex_lock(&key_buf.mutex);
394 struct kdb_keyinfo_pkt* pkt_current = &key_buf.buffer[key_buf.read_ptr];
396 *key_event = *pkt_current;
397 key_buf.buffered_len--;
398 key_buf.read_ptr = (key_buf.read_ptr + 1) % PS2_KBD_RECV_BUFFER_SIZE;
400 mutex_unlock(&key_buf.mutex);
404 static struct kdb_keyinfo_pkt* ps2_keybuffer_next_write() {
405 int index = (key_buf.read_ptr + key_buf.buffered_len) % PS2_KBD_RECV_BUFFER_SIZE;
406 if (index == key_buf.read_ptr && key_buf.buffered_len) {
407 // the reader is lagged so much such that the buffer is full.
408 // It is suggested to read from beginning for nearly up-to-date readings.
409 key_buf.read_ptr = 0;
410 key_buf.buffered_len = index;
413 key_buf.buffered_len++;
415 return &key_buf.buffer[index];