2 #include <sys/interrupts.h>
3 #include <sys/mm/mempart.h>
8 #include <lunaix/fs/taskfs.h>
9 #include <lunaix/mm/cake.h>
10 #include <lunaix/mm/mmap.h>
11 #include <lunaix/mm/pmm.h>
12 #include <lunaix/mm/valloc.h>
13 #include <lunaix/mm/vmm.h>
14 #include <lunaix/process.h>
15 #include <lunaix/sched.h>
16 #include <lunaix/signal.h>
17 #include <lunaix/spike.h>
18 #include <lunaix/status.h>
19 #include <lunaix/syscall.h>
20 #include <lunaix/syslog.h>
22 #include <klibc/string.h>
24 volatile struct proc_info* __current;
26 static struct proc_info dummy_proc;
28 struct proc_info dummy;
30 struct scheduler sched_ctx;
32 struct cake_pile* proc_pile;
42 proc_pile = cake_new_pile("proc", sizeof(struct proc_info), 1, 0);
43 cake_set_constructor(proc_pile, cake_ctor_zeroing);
45 sched_ctx = (struct scheduler){
46 ._procs = vzalloc(PROC_TABLE_SIZE), .ptable_len = 0, .procs_index = 0};
48 // TODO initialize dummy_proc
52 #define DUMMY_STACK_SIZE 2048
57 // This surely need to be simplified or encapsulated!
58 // It is a living nightmare!
60 extern void my_dummy();
61 static char dummy_stack[DUMMY_STACK_SIZE] __attribute__((aligned(16)));
63 ptr_t stktop = (ptr_t)dummy_stack + DUMMY_STACK_SIZE;
65 dummy_proc = (struct proc_info){};
67 proc_init_transfer(&dummy_proc, stktop, (ptr_t)my_dummy, TRANSFER_IE);
69 dummy_proc.page_table = cpu_ldvmspace();
70 dummy_proc.state = PS_READY;
71 dummy_proc.parent = &dummy_proc;
72 dummy_proc.pid = KERNEL_PID;
74 __current = &dummy_proc;
78 run(struct proc_info* proc)
80 proc->state = PS_RUNNING;
87 can_schedule(struct proc_info* proc)
93 struct sighail* sh = &proc->sigctx;
95 if ((proc->state & PS_PAUSED)) {
96 return !!(sh->sig_pending & ~1);
98 if ((proc->state & PS_BLOCKED)) {
99 return sigset_test(sh->sig_pending, _SIGINT);
102 if (sigset_test(sh->sig_pending, _SIGCONT)) {
103 sigset_clear(sh->sig_pending, _SIGSTOP);
104 } else if (sigset_test(sh->sig_pending, _SIGSTOP)) {
105 // 如果进程受到SIGSTOP,则该进程不给予调度。
109 return (proc->state == PS_READY);
115 struct proc_info* leader = sched_ctx._procs[0];
116 struct proc_info *pos, *n;
117 time_t now = clock_systime() / 1000;
118 llist_for_each(pos, n, &leader->sleep.sleepers, sleep.sleepers)
120 if (proc_terminated(pos)) {
124 time_t wtime = pos->sleep.wakeup_time;
125 time_t atime = pos->sleep.alarm_time;
127 if (wtime && now >= wtime) {
128 pos->sleep.wakeup_time = 0;
129 pos->state = PS_READY;
132 if (atime && now >= atime) {
133 pos->sleep.alarm_time = 0;
134 proc_setsignal(pos, _SIGALRM);
137 if (!wtime && !atime) {
139 llist_delete(&pos->sleep.sleepers);
147 if (!sched_ctx.ptable_len) {
151 // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序……
152 cpu_disable_interrupt();
153 struct proc_info* next;
154 int prev_ptr = sched_ctx.procs_index;
158 if (!(__current->state & ~PS_RUNNING)) {
159 __current->state = PS_READY;
164 // round-robin scheduler
166 ptr = (ptr + 1) % sched_ctx.ptable_len;
167 next = sched_ctx._procs[ptr];
169 if (!(found = can_schedule(next))) {
170 if (ptr == prev_ptr) {
177 sched_ctx.procs_index = ptr;
186 cpu_enable_interrupt();
190 __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
196 time_t systime = clock_systime() / 1000;
198 if (__current->sleep.wakeup_time) {
199 return (__current->sleep.wakeup_time - systime);
202 struct proc_info* root_proc = sched_ctx._procs[0];
203 __current->sleep.wakeup_time = systime + seconds;
205 if (llist_empty(&__current->sleep.sleepers)) {
206 llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
209 store_retval(seconds);
217 __DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
219 time_t prev_ddl = __current->sleep.alarm_time;
220 time_t now = clock_systime() / 1000;
222 __current->sleep.alarm_time = seconds ? now + seconds : 0;
224 struct proc_info* root_proc = sched_ctx._procs[0];
225 if (llist_empty(&__current->sleep.sleepers)) {
226 llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
229 return prev_ddl ? (prev_ddl - now) : 0;
232 __DEFINE_LXSYSCALL1(void, exit, int, status)
234 terminate_proc(status);
238 __DEFINE_LXSYSCALL(void, yield)
244 _wait(pid_t wpid, int* status, int options);
246 __DEFINE_LXSYSCALL1(pid_t, wait, int*, status)
248 return _wait(-1, status, 0);
251 __DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options)
253 return _wait(pid, status, options);
256 __DEFINE_LXSYSCALL(int, geterrno)
258 return __current->k_status;
262 _wait(pid_t wpid, int* status, int options)
264 pid_t cur = __current->pid;
265 int status_flags = 0;
266 struct proc_info *proc, *n;
267 if (llist_empty(&__current->children)) {
271 wpid = wpid ? wpid : -__current->pgid;
273 llist_for_each(proc, n, &__current->children, siblings)
275 if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) {
276 if (proc->state == PS_TERMNAT && !options) {
277 status_flags |= PEXITTERM;
280 if (proc->state == PS_READY && (options & WUNTRACED)) {
281 status_flags |= PEXITSTOP;
286 if ((options & WNOHANG)) {
295 *status = proc->exit_code | status_flags;
297 return destroy_process(proc->pid);
304 for (; i < sched_ctx.ptable_len && sched_ctx._procs[i]; i++)
307 if (i == MAX_PROCESS) {
308 panick("Panic in Ponyville shimmer!");
311 if (i == sched_ctx.ptable_len) {
312 sched_ctx.ptable_len++;
315 struct proc_info* proc = cake_grab(proc_pile);
317 proc->state = PS_CREATED;
320 proc->created = clock_systime();
321 proc->pgid = proc->pid;
322 proc->fdtable = vzalloc(sizeof(struct v_fdtable));
324 llist_init_head(&proc->mm.regions);
325 llist_init_head(&proc->tasks);
326 llist_init_head(&proc->children);
327 llist_init_head(&proc->grp_member);
328 llist_init_head(&proc->sleep.sleepers);
330 iopoll_init(&proc->pollctx);
331 waitq_init(&proc->waitqueue);
333 sched_ctx._procs[i] = proc;
339 commit_process(struct proc_info* process)
341 assert(process == sched_ctx._procs[process->pid]);
343 if (process->state != PS_CREATED) {
344 __current->k_status = EINVAL;
348 // every process is the child of first process (pid=1)
349 if (!process->parent) {
350 process->parent = sched_ctx._procs[1];
353 llist_append(&process->parent->children, &process->siblings);
354 llist_append(&sched_ctx._procs[0]->tasks, &process->tasks);
356 process->state = PS_READY;
359 // from <kernel/process.c>
361 __del_pagetable(pid_t pid, ptr_t mount_point);
364 destroy_process(pid_t pid)
367 if (index <= 0 || index > sched_ctx.ptable_len) {
368 __current->k_status = EINVAL;
372 struct proc_info* proc = sched_ctx._procs[index];
373 sched_ctx._procs[index] = 0;
375 llist_delete(&proc->siblings);
376 llist_delete(&proc->grp_member);
377 llist_delete(&proc->tasks);
378 llist_delete(&proc->sleep.sleepers);
380 iopoll_free(pid, &proc->pollctx);
382 taskfs_invalidate(pid);
385 vfs_unref_dnode(proc->cwd);
388 for (size_t i = 0; i < VFS_MAX_FD; i++) {
389 struct v_fd* fd = proc->fdtable->fds[i];
391 vfs_pclose(fd->file, pid);
396 vfree(proc->fdtable);
398 vmm_mount_pd(VMS_MOUNT_1, proc->page_table);
400 struct mm_region *pos, *n;
401 llist_for_each(pos, n, &proc->mm.regions, head)
403 mem_sync_pages(VMS_MOUNT_1, pos, pos->start, pos->end - pos->start, 0);
407 __del_pagetable(pid, VMS_MOUNT_1);
409 vmm_unmount_pd(VMS_MOUNT_1);
411 cake_release(proc_pile, proc);
417 terminate_proc(int exit_code)
419 __current->state = PS_TERMNAT;
420 __current->exit_code = exit_code;
422 proc_setsignal(__current->parent, _SIGCHLD);
426 get_process(pid_t pid)
429 if (index < 0 || index > sched_ctx.ptable_len) {
432 return sched_ctx._procs[index];
436 orphaned_proc(pid_t pid)
440 if (pid >= sched_ctx.ptable_len)
442 struct proc_info* proc = sched_ctx._procs[pid];
443 struct proc_info* parent = proc->parent;
445 // 如果其父进程的状态是terminated 或 destroy中的一种
446 // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
447 return proc_terminated(parent) || parent->created > proc->created;