1 #include <arch/x86/interrupts.h>
2 #include <arch/x86/tss.h>
7 #include <lunaix/fs/taskfs.h>
8 #include <lunaix/mm/cake.h>
9 #include <lunaix/mm/kalloc.h>
10 #include <lunaix/mm/pmm.h>
11 #include <lunaix/mm/valloc.h>
12 #include <lunaix/mm/vmm.h>
13 #include <lunaix/process.h>
14 #include <lunaix/sched.h>
15 #include <lunaix/signal.h>
16 #include <lunaix/spike.h>
17 #include <lunaix/status.h>
18 #include <lunaix/syscall.h>
19 #include <lunaix/syslog.h>
21 volatile struct proc_info* __current;
23 static struct proc_info dummy_proc;
25 struct proc_info dummy;
27 struct scheduler sched_ctx;
29 struct cake_pile* proc_pile;
39 proc_pile = cake_new_pile("proc", sizeof(struct proc_info), 1, 0);
40 cake_set_constructor(proc_pile, cake_ctor_zeroing);
42 sched_ctx = (struct scheduler){ ._procs = vzalloc(PROC_TABLE_SIZE),
46 // TODO initialize dummy_proc
50 #define DUMMY_STACK_SIZE 2048
55 // This surely need to be simplified or encapsulated!
56 // It is a living nightmare!
58 extern void my_dummy();
59 static char dummy_stack[DUMMY_STACK_SIZE] __attribute__((aligned(16)));
62 dummy_proc = (struct proc_info){};
63 dummy_proc.intr_ctx = (isr_param){
64 .registers = { .ds = KDATA_SEG,
68 .esp = (void*)dummy_stack + DUMMY_STACK_SIZE - 20 },
70 .eip = (void*)my_dummy,
72 .eflags = cpu_reflags() | 0x0200
75 *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 4]) = dummy_proc.intr_ctx.eflags;
76 *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 8]) = KCODE_SEG;
77 *(u32_t*)(&dummy_stack[DUMMY_STACK_SIZE - 12]) = dummy_proc.intr_ctx.eip;
79 dummy_proc.page_table = cpu_rcr3();
80 dummy_proc.state = PS_READY;
81 dummy_proc.parent = &dummy_proc;
82 dummy_proc.pid = KERNEL_PID;
84 __current = &dummy_proc;
88 run(struct proc_info* proc)
90 proc->state = PS_RUNNING;
93 将tss.esp0设置为上次调度前的esp值。
94 当处理信号时,上下文信息是不会恢复的,而是保存在用户栈中,然后直接跳转进位于用户空间的sig_wrapper进行
95 信号的处理。当用户自定义的信号处理函数返回时,sigreturn的系统调用才开始进行上下文的恢复(或者说是进行
97 由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
98 这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
100 tss_update_esp(proc->intr_ctx.registers.esp);
102 apic_done_servicing();
104 asm volatile("pushl %0\n"
105 "jmp switch_to\n" ::"r"(proc)
106 : "memory"); // kernel/asm/x86/interrupt.S
110 can_schedule(struct proc_info* proc)
112 if (__SIGTEST(proc->sig_pending, _SIGCONT)) {
113 __SIGCLEAR(proc->sig_pending, _SIGSTOP);
114 } else if (__SIGTEST(proc->sig_pending, _SIGSTOP)) {
115 // 如果进程受到SIGSTOP,则该进程不给予调度。
125 struct proc_info* leader = sched_ctx._procs[0];
126 struct proc_info *pos, *n;
127 time_t now = clock_systime();
128 llist_for_each(pos, n, &leader->sleep.sleepers, sleep.sleepers)
130 if (PROC_TERMINATED(pos->state)) {
134 time_t wtime = pos->sleep.wakeup_time;
135 time_t atime = pos->sleep.alarm_time;
137 if (wtime && now >= wtime) {
138 pos->sleep.wakeup_time = 0;
139 pos->state = PS_READY;
142 if (atime && now >= atime) {
143 pos->sleep.alarm_time = 0;
144 __SIGSET(pos->sig_pending, _SIGALRM);
147 if (!wtime && !atime) {
149 llist_delete(&pos->sleep.sleepers);
157 if (!sched_ctx.ptable_len) {
161 // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序……
162 cpu_disable_interrupt();
163 struct proc_info* next;
164 int prev_ptr = sched_ctx.procs_index;
167 if (!(__current->state & ~PS_RUNNING)) {
168 __current->state = PS_READY;
173 // round-robin scheduler
176 ptr = (ptr + 1) % sched_ctx.ptable_len;
177 next = sched_ctx._procs[ptr];
178 } while (!next || (next->state != PS_READY && ptr != prev_ptr));
180 sched_ctx.procs_index = ptr;
182 if (next->state != PS_READY) {
183 // schedule the dummy process if we're out of choice
188 if (!can_schedule(next)) {
189 // 如果该进程不给予调度,则尝试重新选择
200 cpu_enable_interrupt();
201 cpu_int(LUNAIX_SCHED);
204 __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
210 if (__current->sleep.wakeup_time) {
211 return (__current->sleep.wakeup_time - clock_systime()) / 1000U;
214 struct proc_info* root_proc = sched_ctx._procs[0];
215 __current->sleep.wakeup_time = clock_systime() + seconds * 1000;
216 llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
218 __current->intr_ctx.registers.eax = seconds;
224 __DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
226 time_t prev_ddl = __current->sleep.alarm_time;
227 time_t now = clock_systime();
229 __current->sleep.alarm_time = seconds ? now + seconds * 1000 : 0;
231 struct proc_info* root_proc = sched_ctx._procs[0];
232 if (llist_empty(&__current->sleep.sleepers)) {
233 llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
236 return prev_ddl ? (prev_ddl - now) / 1000 : 0;
239 __DEFINE_LXSYSCALL1(void, exit, int, status)
241 terminate_proc(status);
245 __DEFINE_LXSYSCALL(void, yield)
251 _wait(pid_t wpid, int* status, int options);
253 __DEFINE_LXSYSCALL1(pid_t, wait, int*, status)
255 return _wait(-1, status, 0);
258 __DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options)
260 return _wait(pid, status, options);
263 __DEFINE_LXSYSCALL(int, geterrno)
265 return __current->k_status;
269 _wait(pid_t wpid, int* status, int options)
271 pid_t cur = __current->pid;
272 int status_flags = 0;
273 struct proc_info *proc, *n;
274 if (llist_empty(&__current->children)) {
278 wpid = wpid ? wpid : -__current->pgid;
280 llist_for_each(proc, n, &__current->children, siblings)
282 if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) {
283 if (proc->state == PS_TERMNAT && !options) {
284 status_flags |= PEXITTERM;
287 if (proc->state == PS_READY && (options & WUNTRACED)) {
288 status_flags |= PEXITSTOP;
293 if ((options & WNOHANG)) {
301 status_flags |= PEXITSIG * (proc->sig_inprogress != 0);
303 *status = proc->exit_code | status_flags;
305 return destroy_process(proc->pid);
312 for (; i < sched_ctx.ptable_len && sched_ctx._procs[i]; i++)
315 if (i == MAX_PROCESS) {
316 panick("Panic in Ponyville shimmer!");
319 if (i == sched_ctx.ptable_len) {
320 sched_ctx.ptable_len++;
323 struct proc_info* proc = cake_grab(proc_pile);
325 proc->state = PS_CREATED;
327 proc->created = clock_systime();
328 proc->pgid = proc->pid;
329 proc->fdtable = vzalloc(sizeof(struct v_fdtable));
331 vzalloc_dma(512); // FXSAVE需要十六位对齐地址,使用DMA块(128位对齐)
333 llist_init_head(&proc->mm.regions.head);
334 llist_init_head(&proc->tasks);
335 llist_init_head(&proc->children);
336 llist_init_head(&proc->grp_member);
337 llist_init_head(&proc->sleep.sleepers);
338 waitq_init(&proc->waitqueue);
340 sched_ctx._procs[i] = proc;
346 commit_process(struct proc_info* process)
348 assert(process == sched_ctx._procs[process->pid]);
350 if (process->state != PS_CREATED) {
351 __current->k_status = EINVAL;
355 // every process is the child of first process (pid=1)
356 if (!process->parent) {
357 process->parent = sched_ctx._procs[1];
360 llist_append(&process->parent->children, &process->siblings);
361 llist_append(&sched_ctx._procs[0]->tasks, &process->tasks);
363 process->state = PS_READY;
366 // from <kernel/process.c>
368 __del_pagetable(pid_t pid, uintptr_t mount_point);
371 destroy_process(pid_t pid)
374 if (index <= 0 || index > sched_ctx.ptable_len) {
375 __current->k_status = EINVAL;
378 struct proc_info* proc = sched_ctx._procs[index];
379 sched_ctx._procs[index] = 0;
381 llist_delete(&proc->siblings);
382 llist_delete(&proc->grp_member);
383 llist_delete(&proc->tasks);
384 llist_delete(&proc->sleep.sleepers);
386 taskfs_invalidate(pid);
389 vfs_unref_dnode(proc->cwd);
392 for (size_t i = 0; i < VFS_MAX_FD; i++) {
393 struct v_fd* fd = proc->fdtable->fds[i];
395 vfs_pclose(fd->file, pid);
400 vfree(proc->fdtable);
401 vfree_dma(proc->fxstate);
403 struct mm_region *pos, *n;
404 llist_for_each(pos, n, &proc->mm.regions.head, head)
409 vmm_mount_pd(PD_MOUNT_1, proc->page_table);
411 __del_pagetable(pid, PD_MOUNT_1);
413 vmm_unmount_pd(PD_MOUNT_1);
415 cake_release(proc_pile, proc);
421 terminate_proc(int exit_code)
423 __current->state = PS_TERMNAT;
424 __current->exit_code = exit_code;
426 __SIGSET(__current->parent->sig_pending, _SIGCHLD);
430 get_process(pid_t pid)
433 if (index < 0 || index > sched_ctx.ptable_len) {
436 return sched_ctx._procs[index];
440 orphaned_proc(pid_t pid)
444 if (pid >= sched_ctx.ptable_len)
446 struct proc_info* proc = sched_ctx._procs[pid];
447 struct proc_info* parent = proc->parent;
449 // 如果其父进程的状态是terminated 或 destroy中的一种
450 // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
451 return PROC_TERMINATED(parent->state) || parent->created > proc->created;