1 #include <lunaix/peripheral/ps2kbd.h>
2 #include <lunaix/clock.h>
3 #include <lunaix/timer.h>
4 #include <lunaix/common.h>
5 #include <lunaix/syslog.h>
6 #include <hal/acpi/acpi.h>
9 #include <arch/x86/interrupts.h>
10 #include <klibc/string.h>
14 #define PS2_DEV_CMD_MAX_ATTEMPTS 5
18 static struct ps2_cmd_queue cmd_q;
19 static struct ps2_key_buffer key_buf;
20 static struct ps2_kbd_state kbd_state;
22 #define KEY_NUM(x) (x + 0x30)
23 #define KEY_NPAD(x) ON_KEYPAD(KEY_NUM(x))
25 // 我们使用 Scancode Set 2
28 static kbd_keycode_t scancode_set2[] = {
29 0, KEY_F9, 0, KEY_F5, KEY_F3, KEY_F1, KEY_F2, KEY_F12, 0, KEY_F10, KEY_F8, KEY_F6,
30 KEY_F4, KEY_HTAB, '`', 0, 0, KEY_LALT, KEY_LSHIFT, 0, KEY_LCTRL, 'q', KEY_NUM(1),
31 0, 0, 0, 'z', 's', 'a', 'w', KEY_NUM(2), 0, 0, 'c', 'x', 'd', 'e', KEY_NUM(4), KEY_NUM(3),
32 0, 0, KEY_SPACE, 'v', 'f', 't', 'r', KEY_NUM(5),
33 0, 0, 'n', 'b', 'h', 'g', 'y', KEY_NUM(6), 0, 0, 0, 'm', 'j', 'u', KEY_NUM(7), KEY_NUM(8),
34 0, 0, ',', 'k', 'i', 'o', KEY_NUM(0), KEY_NUM(9), 0, 0, '.', '/', 'l', ';', 'p', '-', 0, 0,
35 0, '\'', 0, '[', '=', 0, 0, KEY_CAPSLK, KEY_RSHIFT, KEY_LF, ']', 0, '\\', 0, 0, 0, 0, 0, 0, 0,
36 0, KEY_BS, 0, 0, KEY_NPAD(1), 0, KEY_NPAD(4), KEY_NPAD(7), 0, 0, 0, KEY_NPAD(0), ON_KEYPAD('.'),
37 KEY_NPAD(2), KEY_NPAD(5), KEY_NPAD(6), KEY_NPAD(8), KEY_ESC, KEY_NUMSLK, KEY_F11, ON_KEYPAD('+'),
38 KEY_NPAD(3), ON_KEYPAD('-'), ON_KEYPAD('*'), KEY_NPAD(9), KEY_SCRLLK, 0, 0, 0, 0, KEY_F7
41 // 一些特殊的键码(以 0xe0 位前缀的)
42 static kbd_keycode_t scancode_set2_ex[] = {
43 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KEY_RALT, 0, 0,
44 KEY_RCTRL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
45 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
46 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ON_KEYPAD('/'), 0, 0, 0, 0, 0, 0, 0, 0,
47 0, 0, 0, 0, 0, 0, 0, ON_KEYPAD(KEY_LF), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
48 KEY_END, 0, KEY_LEFT, KEY_HOME,
49 0, 0, 0, KEY_INSERT, KEY_DELETE, KEY_DOWN, 0, KEY_RIGHT, KEY_UP, 0, 0,
50 0, 0, KEY_PG_DOWN, 0, 0, KEY_PG_UP
53 // 用于处理 Shift+<key> 的情况
54 static kbd_keycode_t scancode_set2_shift[] = {
55 0, KEY_F9, 0, KEY_F5, KEY_F3, KEY_F1, KEY_F2, KEY_F12, 0, KEY_F10, KEY_F8, KEY_F6,
56 KEY_F4, KEY_HTAB, '~', 0, 0, KEY_LALT, KEY_LSHIFT, 0, KEY_LCTRL, 'Q', '!',
57 0, 0, 0, 'Z', 'S', 'A', 'W', '@', 0, 0, 'C', 'X', 'D', 'E', '$', '#',
58 0, 0, KEY_SPACE, 'V', 'F', 'T', 'R', '%',
59 0, 0, 'N', 'B', 'H', 'G', 'Y', '^', 0, 0, 0, 'M', 'J', 'U', '&', '*',
60 0, 0, '<', 'K', 'I', 'O', ')', '(', 0, 0, '>', '?', 'L', ':', 'P', '_', 0, 0,
61 0, '"', 0, '{', '+', 0, 0, KEY_CAPSLK, KEY_RSHIFT, KEY_LF, '}', 0, '|', 0, 0, 0, 0, 0, 0, 0,
62 0, KEY_BS, 0, 0, KEY_NPAD(1), 0, KEY_NPAD(4), KEY_NPAD(7), 0, 0, 0, KEY_NPAD(0), ON_KEYPAD('.'),
63 KEY_NPAD(2), KEY_NPAD(5), KEY_NPAD(6), KEY_NPAD(8), KEY_ESC, KEY_NUMSLK, KEY_F11, ON_KEYPAD('+'),
64 KEY_NPAD(3), ON_KEYPAD('-'), ON_KEYPAD('*'), KEY_SCRLLK, 0, 0, 0, 0, KEY_F7
68 #define KBD_STATE_KWAIT 0x00
69 #define KBD_STATE_KSPECIAL 0x01
70 #define KBD_STATE_KRELEASED 0x02
71 #define KBD_STATE_CMDPROCS 0x40
73 void intr_ps2_kbd_handler(const isr_param* param);
74 static struct kdb_keyinfo_pkt* ps2_keybuffer_next_write();
76 // TODO: Abstract the bounded buffer out.
77 void ps2_device_post_cmd(char cmd, char arg) {
78 mutex_lock(&cmd_q.mutex);
79 int index = (cmd_q.queue_ptr + cmd_q.queue_len) % PS2_CMD_QUEUE_SIZE;
80 if (index == cmd_q.queue_ptr && cmd_q.queue_len) {
82 mutex_unlock(&cmd_q.mutex);
86 struct ps2_cmd *container = &cmd_q.cmd_queue[index];
92 mutex_unlock(&cmd_q.mutex);
97 memset(&cmd_q, 0, sizeof(cmd_q));
98 memset(&key_buf, 0, sizeof(key_buf));
99 memset(&kbd_state, 0, sizeof(kbd_state));
101 mutex_init(&cmd_q.mutex);
102 mutex_init(&key_buf.mutex);
105 kbd_state.translation_table = scancode_set2;
106 kbd_state.state = KBD_STATE_KWAIT;
108 acpi_context* acpi_ctx = acpi_get_context();
109 if (!(acpi_ctx->fadt.boot_arch & IAPC_ARCH_8042)) {
110 kprintf(KERROR "No PS/2 controller detected.\n");
111 // FUTURE: Some alternative fallback on this? Check PCI bus for USB controller instead?
115 cpu_disable_interrupt();
118 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_PORT1_DISABLE, PS2_NO_ARG);
119 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_PORT2_DISABLE, PS2_NO_ARG);
122 io_inb(PS2_PORT_ENC_DATA);
126 // 3、屏蔽所有PS/2设备(端口1&2)IRQ,并且禁用键盘键码转换功能
127 result = ps2_issue_cmd(PS2_CMD_READ_CFG, PS2_NO_ARG);
128 result = result & ~(PS2_CFG_P1INT | PS2_CFG_P2INT | PS2_CFG_TRANSLATION);
129 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_WRITE_CFG, result);
132 result = ps2_issue_cmd(PS2_CMD_SELFTEST, PS2_NO_ARG);
133 if (result != PS2_RESULT_TEST_OK) {
134 kprintf(KERROR "Controller self-test failed.");
138 // 5、设备自检(端口1自检,通常是我们的键盘)
139 result = ps2_issue_cmd(PS2_CMD_SELFTEST_PORT1, PS2_NO_ARG);
141 kprintf(KERROR "Interface test on port 1 failed.");
145 // 6、开启位于端口1的 IRQ,并启用端口1。不用理会端口2,那儿一般是鼠标。
146 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_PORT1_ENABLE, PS2_NO_ARG);
147 result = ps2_issue_cmd(PS2_CMD_READ_CFG, PS2_NO_ARG);
148 result = result | PS2_CFG_P1INT;
149 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, PS2_CMD_WRITE_CFG, result);
151 // 至此,PS/2控制器和设备已完成初始化,可以正常使用。
153 // 将我们的键盘驱动挂载到第204号中断上(已由IOAPIC映射至IRQ#1),
154 intr_subscribe(PC_KBD_IV, intr_ps2_kbd_handler);
156 // 搞一个计时器,将我们的 ps2_process_cmd 挂上去。每隔5毫秒执行排在队头的命令。
157 // 为什么只执行队头的命令,而不是全部的命令?
158 // 因为我们需要保证isr尽量的简短,运行起来快速。而发送这些命令非常的耗时。
159 timer_run_ms(5, ps2_process_cmd, NULL, TIMER_MODE_PERIODIC);
162 cpu_enable_interrupt();
165 void ps2_process_cmd(void* arg) {
166 // 检查锁是否已被启用,如果启用,则表明该timer中断发生时,某个指令正在入队。
167 // 如果是这种情况则跳过,留到下一轮再尝试处理。
168 // 注意,这里其实是ISR的一部分(timer中断),对于单核CPU来说,ISR等同于单个的原子操作。
169 // (因为EFLAGS.IF=0,所有可屏蔽中断被屏蔽。对于NMI的情况,那么就直接算是triple fault了,所以也没有讨论的意义)
170 // 所以,假若我们遵从互斥锁的严格定义(即这里需要阻塞),那么中断将会被阻塞,进而造成死锁。
172 // 会不会产生指令堆积?不会,因为指令发送的频率远远低于指令队列清空的频率。在目前,我们发送的唯一指令
173 // 就只是用来开关键盘上的LED灯(如CAPSLOCK)。
174 if (mutex_on_hold(&cmd_q.mutex) || !cmd_q.queue_len) {
179 struct ps2_cmd *pending_cmd = &cmd_q.cmd_queue[cmd_q.queue_ptr];
183 // 尝试将命令发送至PS/2键盘(通过PS/2控制器)
184 // 如果不成功(0x60 IO口返回 0xfe,即 NAK 或 Resend)
187 result = ps2_issue_dev_cmd(pending_cmd->cmd, pending_cmd->arg);
188 kbd_state.state += KBD_STATE_CMDPROCS;
190 } while(result == PS2_RESULT_NAK && attempts < PS2_DEV_CMD_MAX_ATTEMPTS);
192 // XXX: 是否需要处理不成功的指令?
194 cmd_q.queue_ptr = (cmd_q.queue_ptr + 1) % PS2_CMD_QUEUE_SIZE;
198 void kbd_buffer_key_event(kbd_keycode_t key, uint8_t scancode, kbd_kstate_t state) {
199 // forgive me on these ugly bit-level tricks,
200 // I really hate doing branching on these "fliping switch" things
201 if (key == KEY_CAPSLK) {
202 kbd_state.key_state ^= KBD_KEY_FCAPSLKED & -state;
203 } else if (key == KEY_NUMSLK) {
204 kbd_state.key_state ^= KBD_KEY_FNUMBLKED & -state;
205 } else if (key == KEY_SCRLLK) {
206 kbd_state.key_state ^= KBD_KEY_FSCRLLKED & -state;
208 if ((key & MODIFR)) {
209 kbd_kstate_t tmp = (KBD_KEY_FLSHIFT_HELD << (key & 0x00ff));
210 kbd_state.key_state = (kbd_state.key_state & ~tmp) | (tmp & -state);
212 else if (!(key & 0xff00) && (kbd_state.key_state & (KBD_KEY_FLSHIFT_HELD | KBD_KEY_FRSHIFT_HELD))) {
213 key = scancode_set2_shift[scancode];
215 state = state | kbd_state.key_state;
216 key = key & (0xffdf | -('a' > key || key > 'z' || !(state & KBD_KEY_FCAPSLKED)));
218 if (!mutex_on_hold(&key_buf.mutex)) {
219 struct kdb_keyinfo_pkt* keyevent_pkt = ps2_keybuffer_next_write();
220 *keyevent_pkt = (struct kdb_keyinfo_pkt) {
222 .scancode = scancode,
224 .timestamp = clock_systime()
228 // kprintf(KDEBUG "%c (t=%d, s=%x, c=%d)\n", key & 0x00ff, timestamp, state, key >> 8);
229 return; // do not delete this return
232 // Ooops, this guy generates irq!
233 ps2_device_post_cmd(PS2_KBD_CMD_SETLED, (kbd_state.key_state >> 1) & 0x00ff);
236 void intr_ps2_kbd_handler(const isr_param* param) {
238 // Do not move this line. It is in the right place and right order.
239 // This is to ensure we've cleared the output buffer everytime, so it won't pile up across irqs.
240 uint8_t scancode = io_inb(PS2_PORT_ENC_DATA);
244 * 判断键盘是否处在指令发送状态,防止误触发。(伪输入中断)
245 * 这是因为我们需要向ps/2设备发送指令(比如控制led灯),而指令会有返回码。
246 * 这就会有可能导致ps/2控制器在受到我们的命令后(在ps2_process_cmd中),
247 * 产生IRQ#1中断(虽然说这种情况取决于底层BIOS实现,但还是会发生,比如QEMU和bochs)。
248 * 所以这就是说,当IRQ#1中断产生时,我们的CPU正处在另一个ISR中。这样就会导致所有的外部中断被缓存在APIC内部的
249 * FIFO队列里,进行排队等待(APIC长度为二的队列 {IRR, TMR};参考 Intel Manual Vol.3A 10.8.4)
250 * 那么当ps2_process_cmd执行完后(内嵌在#APIC_TIMER_IV),CPU返回EOI给APIC,APIC紧接着将排在队里的IRQ#1发送给CPU
251 * 造成误触发。也就是说,我们此时读入的scancode实则上是上一个指令的返回代码。
254 * 但是这种方法有个问题,那就是,假若我们的某一个命令失败了一次,ps/2给出0xfe,我们重传,ps/2收到指令并给出0xfa。
255 * 那么这样一来,将会由两个连续的IRQ#1产生。而APIC是最多可以缓存两个IRQ,于是我们就会漏掉一个IRQ,依然会误触发。
259 if ((kbd_state.state & 0xc0)) {
260 kbd_state.state -= KBD_STATE_CMDPROCS;
264 //kprintf(KINFO "%x\n", scancode & 0xff);
266 switch (kbd_state.state)
268 case KBD_STATE_KWAIT:
269 if (scancode == 0xf0) { // release code
270 kbd_state.state = KBD_STATE_KRELEASED;
271 } else if (scancode == 0xe0) {
272 kbd_state.state = KBD_STATE_KSPECIAL;
273 kbd_state.translation_table = scancode_set2_ex;
275 key = kbd_state.translation_table[scancode];
276 kbd_buffer_key_event(key, scancode, KBD_KEY_FPRESSED);
279 case KBD_STATE_KSPECIAL:
280 if (scancode == 0xf0) { //release code
281 kbd_state.state = KBD_STATE_KRELEASED;
283 key = kbd_state.translation_table[scancode];
284 kbd_buffer_key_event(key, scancode, KBD_KEY_FPRESSED);
286 kbd_state.state = KBD_STATE_KWAIT;
287 kbd_state.translation_table = scancode_set2;
290 case KBD_STATE_KRELEASED:
291 key = kbd_state.translation_table[scancode];
292 kbd_buffer_key_event(key, scancode, KBD_KEY_FRELEASED);
294 // reset the translation table to scancode_set2
295 kbd_state.state = KBD_STATE_KWAIT;
296 kbd_state.translation_table = scancode_set2;
304 static uint8_t ps2_issue_cmd(char cmd, uint16_t arg) {
305 ps2_post_cmd(PS2_PORT_CTRL_CMDREG, cmd, arg);
309 // 等待PS/2控制器返回。通过轮询(polling)状态寄存器的 bit 0
310 // 如置位,则表明返回代码此时就在 0x60 IO口上等待读取。
311 while(!((result = io_inb(PS2_PORT_CTRL_STATUS)) & PS2_STATUS_OFULL));
313 return io_inb(PS2_PORT_ENC_CMDREG);
316 static uint8_t ps2_issue_dev_cmd(char cmd, uint16_t arg) {
317 ps2_post_cmd(PS2_PORT_ENC_CMDREG, cmd, arg);
321 // 等待PS/2控制器返回。通过轮询(polling)状态寄存器的 bit 0
322 // 如置位,则表明返回代码此时就在 0x60 IO口上等待读取。
323 while(!((result = io_inb(PS2_PORT_CTRL_STATUS)) & PS2_STATUS_OFULL));
325 return io_inb(PS2_PORT_ENC_CMDREG);
328 static void ps2_post_cmd(uint8_t port, char cmd, uint16_t arg) {
330 // 等待PS/2输入缓冲区清空,这样我们才可以写入命令
331 while((result = io_inb(PS2_PORT_CTRL_STATUS)) & PS2_STATUS_IFULL);
334 if (!(arg & PS2_NO_ARG)) {
336 io_outb(PS2_PORT_ENC_CMDREG, (uint8_t)(arg & 0x00ff));
340 int kbd_recv_key(struct kdb_keyinfo_pkt* key_event) {
341 if (!key_buf.buffered_len) {
344 mutex_lock(&key_buf.mutex);
346 struct kdb_keyinfo_pkt* pkt_current = &key_buf.buffer[key_buf.read_ptr];
348 *key_event = *pkt_current;
349 key_buf.buffered_len--;
350 key_buf.read_ptr = (key_buf.read_ptr + 1) % PS2_KBD_RECV_BUFFER_SIZE;
352 mutex_unlock(&key_buf.mutex);
356 static struct kdb_keyinfo_pkt* ps2_keybuffer_next_write() {
357 int index = (key_buf.read_ptr + key_buf.buffered_len) % PS2_KBD_RECV_BUFFER_SIZE;
358 if (index == key_buf.read_ptr && key_buf.buffered_len) {
359 // the reader is lagged so much such that the buffer is full.
360 // It is suggested to read from beginning for nearly up-to-date readings.
361 key_buf.read_ptr = 0;
362 key_buf.buffered_len = index;
365 key_buf.buffered_len++;
367 return &key_buf.buffer[index];