2 #include <sys/interrupts.h>
7 #include <lunaix/fs/taskfs.h>
8 #include <lunaix/mm/cake.h>
9 #include <lunaix/mm/mmap.h>
10 #include <lunaix/mm/pmm.h>
11 #include <lunaix/mm/valloc.h>
12 #include <lunaix/mm/vmm.h>
13 #include <lunaix/process.h>
14 #include <lunaix/sched.h>
15 #include <lunaix/signal.h>
16 #include <lunaix/spike.h>
17 #include <lunaix/status.h>
18 #include <lunaix/syscall.h>
19 #include <lunaix/syslog.h>
21 #include <klibc/string.h>
23 volatile struct proc_info* __current;
25 static struct proc_info dummy_proc;
27 struct proc_info dummy;
29 struct scheduler sched_ctx;
31 struct cake_pile* proc_pile;
41 proc_pile = cake_new_pile("proc", sizeof(struct proc_info), 1, 0);
42 cake_set_constructor(proc_pile, cake_ctor_zeroing);
44 sched_ctx = (struct scheduler){ ._procs = vzalloc(PROC_TABLE_SIZE),
48 // TODO initialize dummy_proc
52 #define DUMMY_STACK_SIZE 2048
57 // This surely need to be simplified or encapsulated!
58 // It is a living nightmare!
60 extern void my_dummy();
61 static char dummy_stack[DUMMY_STACK_SIZE] __attribute__((aligned(16)));
63 ptr_t stktop = (ptr_t)dummy_stack + DUMMY_STACK_SIZE;
65 dummy_proc = (struct proc_info){};
67 proc_init_transfer(&dummy_proc, stktop, (ptr_t)my_dummy, TRANSFER_IE);
69 dummy_proc.page_table = cpu_ldvmspace();
70 dummy_proc.state = PS_READY;
71 dummy_proc.parent = &dummy_proc;
72 dummy_proc.pid = KERNEL_PID;
74 __current = &dummy_proc;
78 run(struct proc_info* proc)
80 proc->state = PS_RUNNING;
83 将tss.esp0设置为上次调度前的esp值。
84 当处理信号时,上下文信息是不会恢复的,而是保存在用户栈中,然后直接跳转进位于用户空间的sig_wrapper进行
85 信号的处理。当用户自定义的信号处理函数返回时,sigreturn的系统调用才开始进行上下文的恢复(或者说是进行
87 由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
88 这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
91 apic_done_servicing();
93 asm volatile("pushl %0\n"
94 "jmp switch_to\n" ::"r"(proc)
95 : "memory"); // kernel/asm/x86/interrupt.S
99 can_schedule(struct proc_info* proc)
105 struct sighail* sh = &proc->sigctx;
107 if ((proc->state & PS_PAUSED)) {
108 return !!(sh->sig_pending & ~1);
111 if (sigset_test(sh->sig_pending, _SIGCONT)) {
112 sigset_clear(sh->sig_pending, _SIGSTOP);
113 } else if (sigset_test(sh->sig_pending, _SIGSTOP)) {
114 // 如果进程受到SIGSTOP,则该进程不给予调度。
118 return (proc->state == PS_READY);
124 struct proc_info* leader = sched_ctx._procs[0];
125 struct proc_info *pos, *n;
126 time_t now = clock_systime();
127 llist_for_each(pos, n, &leader->sleep.sleepers, sleep.sleepers)
129 if (proc_terminated(pos)) {
133 time_t wtime = pos->sleep.wakeup_time;
134 time_t atime = pos->sleep.alarm_time;
136 if (wtime && now >= wtime) {
137 pos->sleep.wakeup_time = 0;
138 pos->state = PS_READY;
141 if (atime && now >= atime) {
142 pos->sleep.alarm_time = 0;
143 proc_setsignal(pos, _SIGALRM);
146 if (!wtime && !atime) {
148 llist_delete(&pos->sleep.sleepers);
156 if (!sched_ctx.ptable_len) {
160 // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序……
161 cpu_disable_interrupt();
162 struct proc_info* next;
163 int prev_ptr = sched_ctx.procs_index;
167 if (!(__current->state & ~PS_RUNNING)) {
168 __current->state = PS_READY;
173 // round-robin scheduler
175 ptr = (ptr + 1) % sched_ctx.ptable_len;
176 next = sched_ctx._procs[ptr];
178 if (!(found = can_schedule(next))) {
179 if (ptr == prev_ptr) {
186 sched_ctx.procs_index = ptr;
195 cpu_enable_interrupt();
199 __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
205 if (__current->sleep.wakeup_time) {
206 return (__current->sleep.wakeup_time - clock_systime()) / 1000U;
209 struct proc_info* root_proc = sched_ctx._procs[0];
210 __current->sleep.wakeup_time = clock_systime() + seconds * 1000;
212 if (llist_empty(&__current->sleep.sleepers)) {
213 llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
216 store_retval(seconds);
224 __DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
226 time_t prev_ddl = __current->sleep.alarm_time;
227 time_t now = clock_systime();
229 __current->sleep.alarm_time = seconds ? now + seconds * 1000 : 0;
231 struct proc_info* root_proc = sched_ctx._procs[0];
232 if (llist_empty(&__current->sleep.sleepers)) {
233 llist_append(&root_proc->sleep.sleepers, &__current->sleep.sleepers);
236 return prev_ddl ? (prev_ddl - now) / 1000 : 0;
239 __DEFINE_LXSYSCALL1(void, exit, int, status)
241 terminate_proc(status);
245 __DEFINE_LXSYSCALL(void, yield)
251 _wait(pid_t wpid, int* status, int options);
253 __DEFINE_LXSYSCALL1(pid_t, wait, int*, status)
255 return _wait(-1, status, 0);
258 __DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options)
260 return _wait(pid, status, options);
263 __DEFINE_LXSYSCALL(int, geterrno)
265 return __current->k_status;
269 _wait(pid_t wpid, int* status, int options)
271 pid_t cur = __current->pid;
272 int status_flags = 0;
273 struct proc_info *proc, *n;
274 if (llist_empty(&__current->children)) {
278 wpid = wpid ? wpid : -__current->pgid;
280 llist_for_each(proc, n, &__current->children, siblings)
282 if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) {
283 if (proc->state == PS_TERMNAT && !options) {
284 status_flags |= PEXITTERM;
287 if (proc->state == PS_READY && (options & WUNTRACED)) {
288 status_flags |= PEXITSTOP;
293 if ((options & WNOHANG)) {
302 *status = proc->exit_code | status_flags;
304 return destroy_process(proc->pid);
311 for (; i < sched_ctx.ptable_len && sched_ctx._procs[i]; i++)
314 if (i == MAX_PROCESS) {
315 panick("Panic in Ponyville shimmer!");
318 if (i == sched_ctx.ptable_len) {
319 sched_ctx.ptable_len++;
322 struct proc_info* proc = cake_grab(proc_pile);
324 proc->state = PS_CREATED;
327 proc->created = clock_systime();
328 proc->pgid = proc->pid;
329 proc->fdtable = vzalloc(sizeof(struct v_fdtable));
331 llist_init_head(&proc->mm.regions);
332 llist_init_head(&proc->tasks);
333 llist_init_head(&proc->children);
334 llist_init_head(&proc->grp_member);
335 llist_init_head(&proc->sleep.sleepers);
336 waitq_init(&proc->waitqueue);
338 sched_ctx._procs[i] = proc;
344 commit_process(struct proc_info* process)
346 assert(process == sched_ctx._procs[process->pid]);
348 if (process->state != PS_CREATED) {
349 __current->k_status = EINVAL;
353 // every process is the child of first process (pid=1)
354 if (!process->parent) {
355 process->parent = sched_ctx._procs[1];
358 llist_append(&process->parent->children, &process->siblings);
359 llist_append(&sched_ctx._procs[0]->tasks, &process->tasks);
361 process->state = PS_READY;
364 // from <kernel/process.c>
366 __del_pagetable(pid_t pid, ptr_t mount_point);
369 destroy_process(pid_t pid)
372 if (index <= 0 || index > sched_ctx.ptable_len) {
373 __current->k_status = EINVAL;
377 struct proc_info* proc = sched_ctx._procs[index];
378 sched_ctx._procs[index] = 0;
380 llist_delete(&proc->siblings);
381 llist_delete(&proc->grp_member);
382 llist_delete(&proc->tasks);
383 llist_delete(&proc->sleep.sleepers);
385 taskfs_invalidate(pid);
388 vfs_unref_dnode(proc->cwd);
391 for (size_t i = 0; i < VFS_MAX_FD; i++) {
392 struct v_fd* fd = proc->fdtable->fds[i];
394 vfs_pclose(fd->file, pid);
399 vfree(proc->fdtable);
401 vmm_mount_pd(VMS_MOUNT_1, proc->page_table);
403 struct mm_region *pos, *n;
404 llist_for_each(pos, n, &proc->mm.regions, head)
406 mem_sync_pages(VMS_MOUNT_1, pos, pos->start, pos->end - pos->start, 0);
410 __del_pagetable(pid, VMS_MOUNT_1);
412 vmm_unmount_pd(VMS_MOUNT_1);
414 cake_release(proc_pile, proc);
420 terminate_proc(int exit_code)
422 __current->state = PS_TERMNAT;
423 __current->exit_code = exit_code;
425 proc_setsignal(__current->parent, _SIGCHLD);
429 get_process(pid_t pid)
432 if (index < 0 || index > sched_ctx.ptable_len) {
435 return sched_ctx._procs[index];
439 orphaned_proc(pid_t pid)
443 if (pid >= sched_ctx.ptable_len)
445 struct proc_info* proc = sched_ctx._procs[pid];
446 struct proc_info* parent = proc->parent;
448 // 如果其父进程的状态是terminated 或 destroy中的一种
449 // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
450 return proc_terminated(parent) || parent->created > proc->created;