1 #include <arch/x86/interrupts.h>
2 #include <arch/x86/tss.h>
7 #include <lunaix/mm/kalloc.h>
8 #include <lunaix/mm/pmm.h>
9 #include <lunaix/mm/vmm.h>
10 #include <lunaix/process.h>
11 #include <lunaix/sched.h>
12 #include <lunaix/signal.h>
13 #include <lunaix/spike.h>
14 #include <lunaix/status.h>
15 #include <lunaix/syscall.h>
16 #include <lunaix/syslog.h>
18 #define MAX_PROCESS 512
20 volatile struct proc_info* __current;
22 struct proc_info dummy;
24 struct scheduler sched_ctx;
31 size_t pg_size = ROUNDUP(sizeof(struct proc_info) * MAX_PROCESS, 0x1000);
33 for (size_t i = 0; i <= pg_size; i += 4096) {
34 uintptr_t pa = pmm_alloc_page(KERNEL_PID, PP_FGPERSIST);
36 PD_REFERENCED, PROC_START + i, pa, PG_PREM_RW, VMAP_NULL);
39 sched_ctx = (struct scheduler){ ._procs = (struct proc_info*)PROC_START,
45 run(struct proc_info* proc)
47 proc->state = PS_RUNNING;
50 将tss.esp0设置为上次调度前的esp值。
51 当处理信号时,上下文信息是不会恢复的,而是保存在用户栈中,然后直接跳转进位于用户空间的sig_wrapper进行
52 信号的处理。当用户自定义的信号处理函数返回时,sigreturn的系统调用才开始进行上下文的恢复(或者说是进行
54 由于这中间没有进行地址空间的交换,所以第二次跳转使用的是同一个内核栈,而之前默认tss.esp0的值是永远指向最顶部
55 这样一来就有可能会覆盖更早的上下文信息(比如嵌套的信号捕获函数)
57 tss_update_esp(proc->intr_ctx.registers.esp);
59 apic_done_servicing();
61 asm volatile("pushl %0\n"
62 "jmp switch_to\n" ::"r"(proc)
63 : "memory"); // kernel/asm/x86/interrupt.S
67 can_schedule(struct proc_info* proc)
69 if (__SIGTEST(proc->sig_pending, _SIGCONT)) {
70 __SIGCLEAR(proc->sig_pending, _SIGSTOP);
71 } else if (__SIGTEST(proc->sig_pending, _SIGSTOP)) {
72 // 如果进程受到SIGSTOP,则该进程不给予调度。
82 struct proc_info* leader = &sched_ctx._procs[0];
83 struct proc_info *pos, *n;
84 time_t now = clock_systime();
85 llist_for_each(pos, n, &leader->sleep.sleepers, sleep.sleepers)
87 if (PROC_TERMINATED(pos->state)) {
91 time_t wtime = pos->sleep.wakeup_time;
92 time_t atime = pos->sleep.alarm_time;
94 if (wtime && now >= wtime) {
95 pos->sleep.wakeup_time = 0;
96 pos->state = PS_STOPPED;
99 if (atime && now >= atime) {
100 pos->sleep.alarm_time = 0;
101 __SIGSET(pos->sig_pending, _SIGALRM);
104 if (!wtime && !atime) {
106 llist_delete(&pos->sleep.sleepers);
114 if (!sched_ctx.ptable_len) {
118 // 上下文切换相当的敏感!我们不希望任何的中断打乱栈的顺序……
119 cpu_disable_interrupt();
120 struct proc_info* next;
121 int prev_ptr = sched_ctx.procs_index;
124 if (!(__current->state & ~PS_RUNNING)) {
125 __current->state = PS_STOPPED;
130 // round-robin scheduler
133 ptr = (ptr + 1) % sched_ctx.ptable_len;
134 next = &sched_ctx._procs[ptr];
135 } while (next->state != PS_STOPPED && ptr != prev_ptr);
137 sched_ctx.procs_index = ptr;
139 if (!can_schedule(next)) {
140 // 如果该进程不给予调度,则尝试重新选择
147 __DEFINE_LXSYSCALL1(unsigned int, sleep, unsigned int, seconds)
153 if (__current->sleep.wakeup_time) {
154 return (__current->sleep.wakeup_time - clock_systime()) / 1000U;
157 __current->sleep.wakeup_time = clock_systime() + seconds * 1000;
158 llist_append(&sched_ctx._procs[0].sleep.sleepers,
159 &__current->sleep.sleepers);
161 __current->intr_ctx.registers.eax = seconds;
162 __current->state = PS_BLOCKED;
166 __DEFINE_LXSYSCALL1(unsigned int, alarm, unsigned int, seconds)
168 time_t prev_ddl = __current->sleep.alarm_time;
169 time_t now = clock_systime();
171 __current->sleep.alarm_time = seconds ? now + seconds * 1000 : 0;
173 if (llist_empty(&__current->sleep.sleepers)) {
174 llist_append(&sched_ctx._procs[0].sleep.sleepers,
175 &__current->sleep.sleepers);
178 return prev_ddl ? (prev_ddl - now) / 1000 : 0;
181 __DEFINE_LXSYSCALL1(void, exit, int, status)
183 terminate_proc(status);
187 __DEFINE_LXSYSCALL(void, yield)
193 _wait(pid_t wpid, int* status, int options);
195 __DEFINE_LXSYSCALL1(pid_t, wait, int*, status)
197 return _wait(-1, status, 0);
200 __DEFINE_LXSYSCALL3(pid_t, waitpid, pid_t, pid, int*, status, int, options)
202 return _wait(pid, status, options);
206 _wait(pid_t wpid, int* status, int options)
208 pid_t cur = __current->pid;
209 int status_flags = 0;
210 struct proc_info *proc, *n;
211 if (llist_empty(&__current->children)) {
215 wpid = wpid ? wpid : -__current->pgid;
216 cpu_enable_interrupt();
218 llist_for_each(proc, n, &__current->children, siblings)
220 if (!~wpid || proc->pid == wpid || proc->pgid == -wpid) {
221 if (proc->state == PS_TERMNAT && !options) {
222 status_flags |= PEXITTERM;
225 if (proc->state == PS_STOPPED && (options & WUNTRACED)) {
226 status_flags |= PEXITSTOP;
231 if ((options & WNOHANG)) {
239 cpu_disable_interrupt();
240 status_flags |= PEXITSIG * (proc->sig_inprogress != 0);
242 *status = proc->exit_code | status_flags;
244 return destroy_process(proc->pid);
251 for (; i < sched_ctx.ptable_len && sched_ctx._procs[i].state != PS_DESTROY;
255 if (i == MAX_PROCESS) {
256 panick("Panic in Ponyville shimmer!");
259 if (i == sched_ctx.ptable_len) {
260 sched_ctx.ptable_len++;
263 struct proc_info* proc = &sched_ctx._procs[i];
264 memset(proc, 0, sizeof(*proc));
266 proc->state = PS_CREATED;
268 proc->created = clock_systime();
269 proc->pgid = proc->pid;
271 llist_init_head(&proc->mm.regions);
272 llist_init_head(&proc->children);
273 llist_init_head(&proc->grp_member);
274 llist_init_head(&proc->sleep.sleepers);
280 commit_process(struct proc_info* process)
282 assert(process == &sched_ctx._procs[process->pid]);
284 if (process->state != PS_CREATED) {
285 __current->k_status = LXINVL;
289 // every process is the child of first process (pid=1)
290 if (!process->parent) {
291 process->parent = &sched_ctx._procs[1];
294 llist_append(&process->parent->children, &process->siblings);
296 process->state = PS_STOPPED;
299 // from <kernel/process.c>
301 __del_pagetable(pid_t pid, uintptr_t mount_point);
304 destroy_process(pid_t pid)
307 if (index <= 0 || index > sched_ctx.ptable_len) {
308 __current->k_status = LXINVLDPID;
311 struct proc_info* proc = &sched_ctx._procs[index];
312 proc->state = PS_DESTROY;
313 llist_delete(&proc->siblings);
315 struct mm_region *pos, *n;
316 llist_for_each(pos, n, &proc->mm.regions.head, head)
321 vmm_mount_pd(PD_MOUNT_1, proc->page_table);
323 __del_pagetable(pid, PD_MOUNT_1);
325 vmm_unmount_pd(PD_MOUNT_1);
331 terminate_proc(int exit_code)
333 __current->state = PS_TERMNAT;
334 __current->exit_code = exit_code;
336 __SIGSET(__current->parent->sig_pending, _SIGCHLD);
340 get_process(pid_t pid)
343 if (index < 0 || index > sched_ctx.ptable_len) {
346 return &sched_ctx._procs[index];
350 orphaned_proc(pid_t pid)
354 if (pid >= sched_ctx.ptable_len)
356 struct proc_info* proc = &sched_ctx._procs[pid];
357 struct proc_info* parent = proc->parent;
359 // 如果其父进程的状态是terminated 或 destroy中的一种
360 // 或者其父进程是在该进程之后创建的,那么该进程为孤儿进程
361 return PROC_TERMINATED(parent->state) || parent->created > proc->created;