+
+/**** DO NOT USE ****/
+
/**
* @file kalloc.c
* @author Lunaixsky
* @brief Implicit free list implementation of malloc family, for kernel use.
- *
+ *
* This version of code is however the simplest and yet insecured, thread unsafe
* it just to demonstrate how the malloc/free works behind the curtain
* @version 0.1
* @date 2022-03-05
- *
+ *
* @copyright Copyright (c) 2022
- *
+ *
*/
-#include <lunaix/mm/kalloc.h>
-#include <lunaix/mm/dmm.h>
+// #include <lunaix/mm/dmm.h>
+// #include <lunaix/mm/kalloc.h>
+// #include <lunaix/mm/vmm.h>
+
+// #include <lunaix/common.h>
+// #include <lunaix/spike.h>
+
+// #include <klibc/string.h>
+
+// #include <stdint.h>
+
+// extern uint8_t __kernel_heap_start;
+
+// void*
+// lx_malloc_internal(heap_context_t* heap, size_t size);
+
+// void
+// place_chunk(uint8_t* ptr, size_t size);
+
+// void
+// lx_free_internal(void* ptr);
+
+// void*
+// coalesce(uint8_t* chunk_ptr);
+
+// void*
+// lx_grow_heap(heap_context_t* heap, size_t sz);
+
+// /*
+// At the beginning, we allocate an empty page and put our initial marker
+
+// | 4/1 | 0/1 |
+// ^ ^ brk
+// start
+
+// Then, expand the heap further, with HEAP_INIT_SIZE (evaluated to 4096,
+// i.e.,
+// 1 pg size) This will allocate as much pages and override old epilogue
+// marker with a free region hdr and put new epilogue marker. These are
+// handled by lx_grow_heap which is internally used by alloc to expand the
+// heap at many moment when needed.
+
+// | 4/1 | 4096/0 | ....... | 4096/0 | 0/1 |
+// ^ ^ brk_old ^
+// start brk
+
+// Note: the brk always point to the beginning of epilogue.
+// */
+
+// static heap_context_t kheap;
-#include <lunaix/common.h>
-#include <lunaix/spike.h>
-
-#include <klibc/string.h>
-
-#include <stdint.h>
-
-extern uint8_t __kernel_heap_start;
-
-// FIXME: This should go to PCB once we're started to support multitasking
-static heap_context_t __kalloc_kheap;
-
-void*
-lx_malloc_internal(heap_context_t* heap, size_t size);
-
-void
-place_chunk(uint8_t* ptr, size_t size);
-
-void
-lx_free_internal(void* ptr);
-
-void*
-coalesce(uint8_t* chunk_ptr);
-
-void*
-lx_grow_heap(heap_context_t* heap, size_t sz);
-
-/*
- At the beginning, we allocate an empty page and put our initial marker
-
- | 4/1 | 0/1 |
- ^ ^ brk
- start
-
- Then, expand the heap further, with HEAP_INIT_SIZE (evaluated to 4096, i.e., 1 pg size)
- This will allocate as much pages and override old epilogue marker with a free region hdr
- and put new epilogue marker. These are handled by lx_grow_heap which is internally used
- by alloc to expand the heap at many moment when needed.
-
- | 4/1 | 4096/0 | ....... | 4096/0 | 0/1 |
- ^ ^ brk_old ^
- start brk
-
- Note: the brk always point to the beginning of epilogue.
-*/
-
-int
-kalloc_init() {
- __kalloc_kheap.start = &__kernel_heap_start;
- __kalloc_kheap.brk = NULL;
- __kalloc_kheap.max_addr = (void*)K_STACK_START;
-
- if (!dmm_init(&__kalloc_kheap)) {
- return 0;
- }
-
- SW(__kalloc_kheap.start, PACK(4, M_ALLOCATED));
- SW(__kalloc_kheap.start + WSIZE, PACK(0, M_ALLOCATED));
- __kalloc_kheap.brk += WSIZE;
-
- return lx_grow_heap(&__kalloc_kheap, HEAP_INIT_SIZE) != NULL;
-}
-
-void*
-lxmalloc(size_t size) {
- return lx_malloc_internal(&__kalloc_kheap, size);
-}
-
-void*
-lxcalloc(size_t n, size_t elem) {
- size_t pd = n * elem;
-
- // overflow detection
- if (pd < elem || pd < n) {
- return NULL;
- }
-
- void* ptr = lxmalloc(pd);
- if (!ptr) {
- return NULL;
- }
-
- return memset(ptr, 0, pd);
-}
-
-void
-lxfree(void* ptr) {
- if (!ptr) {
- return;
- }
-
- uint8_t* chunk_ptr = (uint8_t*)ptr - WSIZE;
- uint32_t hdr = LW(chunk_ptr);
- size_t sz = CHUNK_S(hdr);
- uint8_t* next_hdr = chunk_ptr + sz;
-
- // make sure the ptr we are 'bout to free makes sense
- // the size trick is stolen from glibc's malloc/malloc.c:4437 ;P
-
- assert_msg(((uintptr_t)ptr < (uintptr_t)(-sz)) && !((uintptr_t)ptr & 0x3),
- "free(): invalid pointer");
-
- assert_msg(sz > WSIZE,
- "free(): invalid size");
-
- SW(chunk_ptr, hdr & ~M_ALLOCATED);
- SW(FPTR(chunk_ptr, sz), hdr & ~M_ALLOCATED);
- SW(next_hdr, LW(next_hdr) | M_PREV_FREE);
-
- coalesce(chunk_ptr);
-}
-
-
-void*
-lx_malloc_internal(heap_context_t* heap, size_t size)
-{
- // Simplest first fit approach.
-
- if (!size) {
- return NULL;
- }
-
- uint8_t* ptr = heap->start;
- // round to largest 4B aligned value
- // and space for header
- size = ROUNDUP(size + WSIZE, BOUNDARY);
- while (ptr < (uint8_t*)heap->brk) {
- uint32_t header = *((uint32_t*)ptr);
- size_t chunk_size = CHUNK_S(header);
- if (!chunk_size && CHUNK_A(header)) {
- break;
- }
- if (chunk_size >= size && !CHUNK_A(header)) {
- // found!
- place_chunk(ptr, size);
- return BPTR(ptr);
- }
- ptr += chunk_size;
- }
-
- // if heap is full (seems to be!), then allocate more space (if it's
- // okay...)
- if ((ptr = lx_grow_heap(heap, size))) {
- place_chunk(ptr, size);
- return BPTR(ptr);
- }
-
- // Well, we are officially OOM!
- return NULL;
-}
-
-void
-place_chunk(uint8_t* ptr, size_t size)
-{
- uint32_t header = *((uint32_t*)ptr);
- size_t chunk_size = CHUNK_S(header);
- *((uint32_t*)ptr) = PACK(size, CHUNK_PF(header) | M_ALLOCATED);
- uint8_t* n_hdrptr = (uint8_t*)(ptr + size);
- uint32_t diff = chunk_size - size;
-
- if (!diff) {
- // if the current free block is fully occupied
- uint32_t n_hdr = LW(n_hdrptr);
- // notify the next block about our avaliability
- SW(n_hdrptr, n_hdr & ~0x2);
- } else {
- // if there is remaining free space left
- uint32_t remainder_hdr = PACK(diff, M_NOT_ALLOCATED | M_PREV_ALLOCATED);
- SW(n_hdrptr, remainder_hdr);
- SW(FPTR(n_hdrptr, diff), remainder_hdr);
-
- /*
- | xxxx | | |
-
- |
- v
-
- | xxxx | |
- */
- coalesce(n_hdrptr);
- }
-}
-
-void*
-coalesce(uint8_t* chunk_ptr)
-{
- uint32_t hdr = LW(chunk_ptr);
- uint32_t pf = CHUNK_PF(hdr);
- uint32_t sz = CHUNK_S(hdr);
-
- uint32_t n_hdr = LW(chunk_ptr + sz);
-
- if (CHUNK_A(n_hdr) && pf) {
- // case 1: prev is free
- uint32_t prev_ftr = LW(chunk_ptr - WSIZE);
- size_t prev_chunk_sz = CHUNK_S(prev_ftr);
- uint32_t new_hdr = PACK(prev_chunk_sz + sz, CHUNK_PF(prev_ftr));
- SW(chunk_ptr - prev_chunk_sz, new_hdr);
- SW(FPTR(chunk_ptr, sz), new_hdr);
- chunk_ptr -= prev_chunk_sz;
- } else if (!CHUNK_A(n_hdr) && !pf) {
- // case 2: next is free
- size_t next_chunk_sz = CHUNK_S(n_hdr);
- uint32_t new_hdr = PACK(next_chunk_sz + sz, pf);
- SW(chunk_ptr, new_hdr);
- SW(FPTR(chunk_ptr, sz + next_chunk_sz), new_hdr);
- } else if (!CHUNK_A(n_hdr) && pf) {
- // case 3: both free
- uint32_t prev_ftr = LW(chunk_ptr - WSIZE);
- size_t next_chunk_sz = CHUNK_S(n_hdr);
- size_t prev_chunk_sz = CHUNK_S(prev_ftr);
- uint32_t new_hdr =
- PACK(next_chunk_sz + prev_chunk_sz + sz, CHUNK_PF(prev_ftr));
- SW(chunk_ptr - prev_chunk_sz, new_hdr);
- SW(FPTR(chunk_ptr, sz + next_chunk_sz), new_hdr);
- chunk_ptr -= prev_chunk_sz;
- }
-
- // (fall through) case 4: prev and next are not free
- return chunk_ptr;
-}
-
-
-void*
-lx_grow_heap(heap_context_t* heap, size_t sz)
-{
- void* start;
-
- // The "+ WSIZE" capture the overhead for epilogue marker
- if (!(start = lxbrk(heap, sz + WSIZE))) {
- return NULL;
- }
- sz = ROUNDUP(sz, BOUNDARY);
-
- // minus the overhead for epilogue, keep the invariant.
- heap->brk -= WSIZE;
-
- uint32_t old_marker = *((uint32_t*)start);
- uint32_t free_hdr = PACK(sz, CHUNK_PF(old_marker));
- SW(start, free_hdr);
- SW(FPTR(start, sz), free_hdr);
- SW(NEXT_CHK(start), PACK(0, M_ALLOCATED | M_PREV_FREE));
-
- return coalesce(start);
-}
\ No newline at end of file
+// int
+// kalloc_init()
+// {
+// kheap.start = KHEAP_START;
+// kheap.brk = NULL;
+// kheap.max_addr =
+// (void*)PROC_START; // 在新的布局中,堆结束的地方即为进程表开始的地方
+
+// for (size_t i = 0; i < KHEAP_SIZE_MB >> 2; i++) {
+// vmm_set_mapping(PD_REFERENCED,
+// (uintptr_t)kheap.start + (i << 22),
+// 0,
+// PG_PREM_RW,
+// VMAP_NOMAP);
+// }
+
+// if (!dmm_init(&kheap)) {
+// return 0;
+// }
+
+// SW(kheap.start, PACK(4, M_ALLOCATED));
+// SW(kheap.start + WSIZE, PACK(0, M_ALLOCATED));
+// kheap.brk += WSIZE;
+
+// return lx_grow_heap(&kheap, HEAP_INIT_SIZE) != NULL;
+// }
+
+// void*
+// lxmalloc(size_t size)
+// {
+// mutex_lock(&kheap.lock);
+// void* r = lx_malloc_internal(&kheap, size);
+// mutex_unlock(&kheap.lock);
+
+// return r;
+// }
+
+// void*
+// lxcalloc(size_t n, size_t elem)
+// {
+// size_t pd = n * elem;
+
+// // overflow detection
+// if (pd < elem || pd < n) {
+// return NULL;
+// }
+
+// void* ptr = lxmalloc(pd);
+// if (!ptr) {
+// return NULL;
+// }
+
+// return memset(ptr, 0, pd);
+// }
+
+// void
+// lxfree(void* ptr)
+// {
+// if (!ptr) {
+// return;
+// }
+// mutex_lock(&kheap.lock);
+
+// uint8_t* chunk_ptr = (uint8_t*)ptr - WSIZE;
+// u32_t hdr = LW(chunk_ptr);
+// size_t sz = CHUNK_S(hdr);
+// uint8_t* next_hdr = chunk_ptr + sz;
+
+// // make sure the ptr we are 'bout to free makes sense
+// // the size trick is stolen from glibc's malloc/malloc.c:4437 ;P
+
+// assert_msg(((uintptr_t)ptr < (uintptr_t)(-sz)) && !((uintptr_t)ptr &
+// 0x3),
+// "free(): invalid pointer");
+
+// assert_msg(sz > WSIZE, "free(): invalid size");
+
+// SW(chunk_ptr, hdr & ~M_ALLOCATED);
+// SW(FPTR(chunk_ptr, sz), hdr & ~M_ALLOCATED);
+// SW(next_hdr, LW(next_hdr) | M_PREV_FREE);
+
+// coalesce(chunk_ptr);
+
+// mutex_unlock(&kheap.lock);
+// }
+
+// void*
+// lx_malloc_internal(heap_context_t* heap, size_t size)
+// {
+// // Simplest first fit approach.
+
+// if (!size) {
+// return NULL;
+// }
+
+// uint8_t* ptr = heap->start;
+// // round to largest 4B aligned value
+// // and space for header
+// size = ROUNDUP(size + WSIZE, BOUNDARY);
+// while (ptr < (uint8_t*)heap->brk) {
+// u32_t header = *((u32_t*)ptr);
+// size_t chunk_size = CHUNK_S(header);
+// if (!chunk_size && CHUNK_A(header)) {
+// break;
+// }
+// if (chunk_size >= size && !CHUNK_A(header)) {
+// // found!
+// place_chunk(ptr, size);
+// return BPTR(ptr);
+// }
+// ptr += chunk_size;
+// }
+
+// // if heap is full (seems to be!), then allocate more space (if it's
+// // okay...)
+// if ((ptr = lx_grow_heap(heap, size))) {
+// place_chunk(ptr, size);
+// return BPTR(ptr);
+// }
+
+// // Well, we are officially OOM!
+// return NULL;
+// }
+
+// void
+// place_chunk(uint8_t* ptr, size_t size)
+// {
+// u32_t header = *((u32_t*)ptr);
+// size_t chunk_size = CHUNK_S(header);
+// *((u32_t*)ptr) = PACK(size, CHUNK_PF(header) | M_ALLOCATED);
+// uint8_t* n_hdrptr = (uint8_t*)(ptr + size);
+// u32_t diff = chunk_size - size;
+
+// if (!diff) {
+// // if the current free block is fully occupied
+// u32_t n_hdr = LW(n_hdrptr);
+// // notify the next block about our avaliability
+// SW(n_hdrptr, n_hdr & ~0x2);
+// } else {
+// // if there is remaining free space left
+// u32_t remainder_hdr = PACK(diff, M_NOT_ALLOCATED |
+// M_PREV_ALLOCATED); SW(n_hdrptr, remainder_hdr); SW(FPTR(n_hdrptr,
+// diff), remainder_hdr);
+
+// /*
+// | xxxx | | |
+
+// |
+// v
+
+// | xxxx | |
+// */
+// coalesce(n_hdrptr);
+// }
+// }
+
+// void*
+// coalesce(uint8_t* chunk_ptr)
+// {
+// u32_t hdr = LW(chunk_ptr);
+// u32_t pf = CHUNK_PF(hdr);
+// u32_t sz = CHUNK_S(hdr);
+
+// u32_t n_hdr = LW(chunk_ptr + sz);
+
+// if (CHUNK_A(n_hdr) && pf) {
+// // case 1: prev is free
+// u32_t prev_ftr = LW(chunk_ptr - WSIZE);
+// size_t prev_chunk_sz = CHUNK_S(prev_ftr);
+// u32_t new_hdr = PACK(prev_chunk_sz + sz, CHUNK_PF(prev_ftr));
+// SW(chunk_ptr - prev_chunk_sz, new_hdr);
+// SW(FPTR(chunk_ptr, sz), new_hdr);
+// chunk_ptr -= prev_chunk_sz;
+// } else if (!CHUNK_A(n_hdr) && !pf) {
+// // case 2: next is free
+// size_t next_chunk_sz = CHUNK_S(n_hdr);
+// u32_t new_hdr = PACK(next_chunk_sz + sz, pf);
+// SW(chunk_ptr, new_hdr);
+// SW(FPTR(chunk_ptr, sz + next_chunk_sz), new_hdr);
+// } else if (!CHUNK_A(n_hdr) && pf) {
+// // case 3: both free
+// u32_t prev_ftr = LW(chunk_ptr - WSIZE);
+// size_t next_chunk_sz = CHUNK_S(n_hdr);
+// size_t prev_chunk_sz = CHUNK_S(prev_ftr);
+// u32_t new_hdr =
+// PACK(next_chunk_sz + prev_chunk_sz + sz, CHUNK_PF(prev_ftr));
+// SW(chunk_ptr - prev_chunk_sz, new_hdr);
+// SW(FPTR(chunk_ptr, sz + next_chunk_sz), new_hdr);
+// chunk_ptr -= prev_chunk_sz;
+// }
+
+// // (fall through) case 4: prev and next are not free
+// return chunk_ptr;
+// }
+
+// void*
+// lx_grow_heap(heap_context_t* heap, size_t sz)
+// {
+// void* start;
+
+// // The "+ WSIZE" capture the overhead for epilogue marker
+// if (!(start = lxsbrk(heap, sz + WSIZE, 0))) {
+// return NULL;
+// }
+// sz = ROUNDUP(sz, BOUNDARY);
+
+// // minus the overhead for epilogue, keep the invariant.
+// heap->brk -= WSIZE;
+
+// u32_t old_marker = *((u32_t*)start);
+// u32_t free_hdr = PACK(sz, CHUNK_PF(old_marker));
+// SW(start, free_hdr);
+// SW(FPTR(start, sz), free_hdr);
+// SW(NEXT_CHK(start), PACK(0, M_ALLOCATED | M_PREV_FREE));
+
+// return coalesce(start);
+// }
\ No newline at end of file